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Preface 
 

Geir Axel Oftedahl, Breakthrough Factory, Norway gao@breakthroughfactory.no 

 

 

It is with a mix of pride and regret that I write this preface for the 10th Hull Performance & Insight 

Conference (HullPIC). Pride, because HullPIC has grown into the leading forum for advancing data-

driven decision-making in field of hull and propeller performance. Regret, because I am unable to 

attend this milestone edition in person and take part in the discussions that continue to shape our in-

dustry. 

 

Looking back, it is remarkable to see how far we have come. What started as an idea born out of the 

ISO 19030 working group discussions has flourished into an annual gathering of experts, ship opera-

tors, solution providers, and researchers – all dedicated to improving ship performance through better 

data and deeper insights. At the heart of this success is the commitment of the HullPIC community to 

openly share knowledge and challenge conventional thinking. This willingness to collaborate across 

industry boundaries is what sets HullPIC apart and ensures that it remains a driving force for innova-

tion. 

 

Of course, HullPIC would never have gotten out-of-dock without Volker Bertram. It was his (admit-

tedly somewhat quirky) leadership and reluctant agreement to organize the first conference that made 

it all possible. His ability to wrangle diverse stakeholders (a true superpower), combined with his 

tireless work behind the scenes, has been instrumental in shaping HullPIC into what it is today. The 

ongoing contributions from speakers, attendees, and supporting organizations have sustained this 

momentum, turning HullPIC into a unique and invaluable event for the maritime community. 

 

Now, more than ever, we need data-driven decision-making. HullPIC’s mission has always been to 

contribute to this goal – not just by showcasing the latest technologies and methodologies, but by 

fostering discussions that lead to real-world improvements in ship efficiency and environmental im-

pact. 

 

As the tenth edition unfolds, I have no doubt that the presentations and conversations will continue to 

push the industry forward. To all those participating, I want to express my gratitude. Your work in 

advancing ship performance monitoring is essential, and HullPIC would not be what it is without your 

engagement and expertise. 

 

I look forward to following the conference outcomes and hope to join you again in the future. Until 

then, I wish you productive discussions, insightful debates, and continued success in shaping the next 

decade of performance monitoring. 

 

 

Geir Axel Oftedahl 
 

February 2025 
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10 Years of HullPIC - Progressing in Hull Performance Monitoring 
 

Volker Bertram, DNV, Hamburg/Germany, volker.bertram@dnv.com 

 

Abstract 

 

This paper describes a personal walk down memory lane for the series of HullPIC conferences, giving 

background on the conferences, but also on how the state of the art in ship performance monitoring has 

evolved in 10 years. HullPIC is, after all, a technical conference and I should stick to the rules, even if 

taking liberty in stretching them. 

 

1. Introduction 

 

The 10th edition of HullPIC is a milestone that nobody foresaw when we planned the first HullPIC 

conference. A decade later, it is a good time to look back to see HullPIC in perspective, as a conference 

mirroring the evolution in performance monitoring in the industry. 

 

Fortunately, 10 years later, we are by no means reduced to worshipping the ashes, but the flame (of 

performance monitoring developments) is still burning strongly as we share it and pass it on to new 

generations of HullPIC participants. The time is right to look at where we have come from and see 

where we are now. 

 

2. Before HullPIC – The ISO 19030 working group years 

 

The roots of HullPIC lie in the development of the ISO 19030, ISO (2016), standard. The working 

group, although changing in composition over the years and meetings, set a tone that focused on sharing 

expertise rather than pushing the own company products. Svend Søyland of Bellona Foundation was 

the Convener of the working group (“the elder statesman”), Geir Axel Oftedahl from Jotun (at that time) 

the Project Leader (“the captain”, doing most of the work to drive the ship forward, avoiding collisions 

and grounding on the rocks of resistance), Fig.1.  

 

  
Fig.1: Svend Søyland (left) and Geir Axel Oftedahl (right) 

 

The following summary of the period of the working group for ISO 19030 is taken from Søyland and 

Oftedahl (2016):  “The process towards developing the ISO19030 started when the Environmental NGO 

Bellona Foundation and Jotun A/S had informal discussions on how to improve energy efficiency within 

the maritime sector. Bellona Foundation looked for a robust and verifiable way to reduce CO2 
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emissions, whereas Jotun A/S saw the need for a more transparent approach to verify a myriad of per-

formance claims on hull and propeller maintenance. 

 

A series of workshops held in accordance with Chatham House Rules involved a steadily increasing 

number of stakeholders and paved the way for a common understanding among performance monitor-

ing companies, measurement manufacturers, ship maintenance system providers, classification socie-

ties, shipbuilders and ship-owners and their associations. Bellona Foundation and Jotun subsequently 

held a side-event at IMO-MEPC meetings and presented the embryo for a reliable and transparent hull 

and performance standard at several maritime conferences. 

 

Work on the ISO-Standard was initiated in June 2013 when Working Group 7 under SC2 TC8 was 

formed. Svend Søyland from Nordic Energy Research serves as the Convener of the working group and 

Geir Axel Oftedahl from Jotun has the role as Project Manager. A series of Working Group meetings 

were held: Oslo (June 2013), Tokyo (November 2013), Hamburg (July 2014), Pusan (November 2014), 

San Ramon (February 2015) and Copenhagen (September 2015). More than 50 experts and observers, 

representing ship owners, shipping associations, new build yards, coatings manufacturers, performance 

monitoring companies, academic institutions, class societies and NGOs participated in the ISO working 

group that reached consensus on ISO 19030 standard. Additional industry stakeholders have been con-

sulted and involved as a part of this extensive process. Worldclass experts shared their deep expertise 

in a truly collaborative effort and put aside their professional ties. A determination to find workable 

compromises was the hallmark of the drafting process. Representatives that in other contexts would be 

fierce competitors share expertise, policies and performance data etc. This was a larger than usual 

Working Group under the ISO-system and the by far largest with the Ship Technology section. The 

drafting process uncovered a need to address both the most rigorous methods available and the most 

commonly used approaches used. This led to the division into three parts. 

 

A Committee Draft of part 1 and 2 (CD) was submitted in March 2015. A Ballot among P-members 

was concluded in May 2015 with sound support. The target date for submitting a Draft International 

Standard (DIS) of all three parts was December 2015. An ISO-Ballot was concluded in March 2016 

and it is expected the Standard will achieve final approval and official publication by June 2016. The 

Working Group (WG7) will remain operational in order to prepare future revisions and refining the 

standard.” 

 

3. Build it and they will come 

 

3.1. When a no means yes 

 

It must have been in early 2015 that I received an email from Geir Axel Oftedahl. He would be coming 

to Hamburg to visit our offices, and would I have time to meet him on that occasion? Sure, I had time. 

A few days later, Geir Axel walked into my office and surprised me with the idea of continuing the 

healthy spirit of exchange of the working group in a post-ISO 19030 conference. And he asked me if I 

would organize it, while Jotun would give flanking support as the main sponsor.  

 

I said no. I had enough on my platter with my full-time job and three other conferences to organize each 

year. Geir Axel understood and asked for some advice. Somehow, 30 minutes later I had outlined the 

concept, suggested a venue (a castle in Italy) and drafted a flyer. And reluctantly agreed to organize the 

event. I shall be eternally grateful for Geir Axel’s powers of persuasion… 

 

A key parameter in any conference is the number of participants as it determines the required size of 

the lecture hall. I estimated that maybe 25 participants would come, based on the number of participants 

in the last meeting of the ISO 19030 working group. Geir Axel was much more optimistic with his 

estimate of 50 participants. In the end, we were 82, Table I. 
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Table I: HullPIC key statistics 

Year 2016 2017 2018 2019 2020* 2021* 2022 2023 2024 

Venue Pavone Ulrichshusen Redworth Gubbio Hamburg Pontignano Tullamore Pontignano Tullamore 

Participants 82 99 103 95 17 58+ 100 117+ 95 

Papers 33 31 36 31 21 19 27 19 23 

* COVID years 

+ HullPIC and PortPIC combined 

 

Key cornerstones of the concept of HullPIC were quickly hammered out: 

 

1. No parallel sessions 

2. Free proceedings available on website http://hullpic.info  

3. “No presentation without a paper” rules (as a means to filter out marketing and political 

presentations) 

4. Jotun sponsored dinner on last day to avoid that presenters face an almost empty lecture hall 

5. In a nice environment, typically in a venue with history, with most participants staying in same 

hotel to facilitate networking 

6. Provide a list of participants with contact details to all attendees to avoid any tedious hunt for 

business cards, as a flanking measure for continued networking 

7. Limit number of participants to maximum 100; the idea was again that at the end everybody 

should know everybody else and have good interaction within the group of participants 

8. Aim to attract all types of stakeholders, particularly ship owners and operators 

 

3.2. HullPIC 2016 

 

The first HullPIC was held 13-15 April 2016, in the Castello di Pavone, https://www.castello-

dipavone.com/, in northern Italy. Unbeknownst at the time, it started another tradition: HullPIC is gen-

erally held in historic places that are difficult to reach. But that was more by accident than intention. It 

is perhaps telling that the first flyer only said HullPIC conference, and not 1st HullPIC conference. At 

the outset, we did not foresee a long series of yearly HullPIC conferences. However, by the time of the 

conference, the response of the community had largely surpassed our expectations, and we were already 

preparing a 2nd HullPIC conference to be announced for the following year. 

 

Despite all controversial discussions on ISO 19030 and the best approach to performance monitoring, 

there was general support for the HullPIC conference itself. Both developers and users of performance 

monitoring systems welcomed the aggregation and exchange of knowledge during the event leading to 

better understanding of ISO 19030, limits and possibilities of data acquisition and correction methods. 

 

  
Fig.2: Group photo with key ISO 19030 work-

ing group members on castle grounds 

Fig.3: Lecture hall inside the castle 
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3.3. 2nd to 9th HullPIC 

 

The popularity of the 1st HullPIC and the growing reputation of the conference led to a rapid increase 

in participation numbers. The upper threshold of 100 participants that Geir Axel Oftedahl and I had 

agreed upon was almost reached by the 2nd HullPIC, Fig.4, and surpassed with the 3rd HullPIC, Fig.5, 

Table I. 

 

  
Fig.4: Jotun representatives and myself (2017) Fig.5: Full house at 3rd HullPIC in 2018 

 

 
Fig.6: Pontignano 2023, joint HullPIC and PortPIC, with record number of participants 

 

The 2nd HullPIC saw the introduction of another tradition, the “Forum”, where two representatives from 

solution vendors and two representatives from ship operators sat up front to answer questions from 

moderators and audience. The late Michael vom Baur moderated the first forum, kicking off with a 

heretic question: Isn’t ISO 19030 fairly useless, seeing the many flaws that have been pointed out during 

the conference? To his and my surprise, the two ship operator representatives were strongly supportive 

of the standard. “A few years ago, we were not even aware that our performance monitoring was basi-

cally non-existent. What we have now is not perfect, but we have progressed from being blind to being 

one-eyed.” Generally, the Forum session has allowed flexible discussion on themes of current interest 

in the field.  

 

HullPIC was on the up and up, until the COVID pandemic disrupted our lives in 2020. We were lucky 

to continue with the conferences, even if on-site participation dropped sharply, Fig.8. Many presenta-

tions had to be given via video conferencing; the proceedings were still good, but it was a stopgap 

solution in exceptional times. Due to the low numbers, both in papers and participants, we merged the 

newly introduced PortPIC and HullPIC conferences in 2021. Born out of necessity, this merger of 

themes and people proved to be very popular. Post-COVID, participation numbers bounced back rap-

idly, Fig.9, with the 8th HullPIC (again merged with PortPIC, following popular demand) reaching de-

mand levels where 25% of the requests for participation had to be turned down, as they exceeded the 

capacity limit of the venue lecture hall. 



 

10 

 

  
Fig.8: HullPIC 2020 – 17 participants Fig.9: HullPIC 2022 – 100 participants 

 

In response, we narrowed down the list of acceptable topics for presentations, excluding robotic in-

water inspection and cleaning, as well as descriptions of measures to improve energy efficiency, such 

as wind assisted propulsion, propulsion improving devices, antifouling technologies, etc. These ex-

cluded topics were then exclusively covered by the HIPER conference and the PortPIC conference (see 

below). 

 

Over the years, new features of HullPIC have strengthened the feeling of community, most notably: 

 

• Richard Marioth (Idealship) introduced a participants’ questionnaire and tombola (first time at 

the 4th HullPIC in Gubbio), Fig.9. Besides multiple-choice questions on performance monitor-

ing for ships, there is also a free-form question on what participants like particularly about the 

HullPIC conference, Fig.12. 

• The 8th HullPIC conference saw a “Hull Management Hero” award given to a member of the 

community with special merits in advancing the state of the art in hull management. The first 

laureate was Geir Axel Oftedahl, Fig.10. In 2024, the second laureate was Beom Jin Park 

(KRISO). 

 

  
Fig.9: Gifts at Richard Marioth’s tombola (at 8th 

HullPIC in 2024) 

Fig.10: Geir Axel Oftedahl receives first Hull    

            Management Hero award (2023) 

 

3.4. HIPER and PortPIC 

 

HullPIC grew too big for our self-imposed capacity limits. At the same time, there was demand for 

more time to discuss in-water inspection and cleaning, with new guidelines and standards evolving, 

notably: 
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• Jotun’s Guideline for Proactive Cleaning of Hull Areas in Port & at Anchorage, Oftedahl and 

Enström (2020) 

• BIMCO industry standard for in-water cleaning with capture, Sørensen (2020) 

• New ISO standard on proactive hull cleaning and the associated Clean Hull Initiative, Oftedahl 

and Skarbø (2021) 

 

In response, Geir Axel Oftedahl approached me to organize a “sister conference”, which in time was 

named PortPIC, short for Port In-Water Cleaning Conference. The name similarity between HullPIC 

and PortPIC was chosen on purpose. 

 

Geir Axel predicted that PortPIC would be [in due time] become bigger than HullPIC. It was a nice 

plan, but between the first announcement and the first conference, COVID struck. PortPIC started with 

a handicap, and we were lucky to get it started at all, in Hamburg. The day after the first PortPIC, the 

city of Hamburg closed down all conference venues and all restaurants. (We had the conference dinner 

with maybe 15 persons in an otherwise empty restaurant in Hamburg which has 1000+ capacity.) 

PortPIC has been held twice in conjunction with HullPIC, but has established itself by now as a stand-

alone conference with 50-60 participants and a set of sponsoring companies in the field of in-water 

inspection and cleaning. Proceedings are hosted on the HullPIC conference website. 

 

The HIPER (High-Performance Marine Vehicles) conference, www.hiper-conf.info, has a different his-

tory. It started out in 1999 as conference on high-speed and unconventional craft, but the theme has 

evolved over the years towards “technologies for future ships and shipping”, which means these days a 

strong focus on innovations supporting the decarbonization process in our industry. HullPIC has the 

focus measuring, HIPER the focus on measures (in design and operation). The conference enjoys in-

creasing popularity with ship owners and operators. 

 

4. Mirroring the state of the art in the industry 

 

Not surprisingly, many papers in the first HullPIC conferences addressed ISO 19030. The newly pub-

lished standard was in the position of a future son-in-law being presented for the first time: inspected 

with polite interest, but not yet adopted wholeheartedly except by its own parents. Some working group 

members presented first practical experience with implementing the standard. Other conference paper 

came from people who had not participated in the development standard and were now faced with a fait 

accompli. There was no shortage of suggestions for what should be changed in ISO 19030, coming 

from both groups, but many had yet to realize that “one does not simply change ISO 19030”, Fig.11.  

 

 
Fig.11: Many had yet to realize that changing an ISO standard was not so simple 
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The process to implement changes required approval of formal submissions from accredited norming 

organizations, and a basic prerequisite for that was wide consensus on what exactly should be changed, 

i.e. getting a large number of stakeholders to support that sentence “ABC” should be changed to “DEF”.  

 

Initially, papers and discussions at HullPIC focused on the core topics of ISO 19030: 

 

• Sensors and proxies: issues with speed log accuracy, using speed over ground instead, estimat-

ing current speed, propeller thrust measurements, wave measurements with on-board radar or 

using hindcast meteo data as proxies in performance monitoring models 

• Filtering: ISO 19030 recommendations for filtering (perceived as too strict) vs high data fre-

quency (seen as cure it all by some), with some suggestions for filter threshold adapted to esti-

mated errors rather than rigid filter thresholds 

• Normalization: baseline models based on CFD (of varying sophistication and accuracy), based 

on machine learning (still largely ‘terra incognita’ for most in the community in 2016), or “naval 

architectural” models (of questionable applicability to off-design drafts and speeds) 

 

Everybody claimed to be ISO 19030 compliant, but only Jotun seemed to follow the default method 

(ISO 19030 Part 2). And compliance with ISO 19030 is until today by self-proclamation; nobody seems 

to certify compliance with the ISO 19030, and nobody seems to see a need for that. 

 

Adoption and application in practice of ISO 19030 has developed differently from what its founding 

fathers probably intended or imagined. But such is life. Children often grow and develop in their own 

ways and the founding fathers can be proud of what ISO 19030 achieved: 

 

• better documentation with more transparency on techniques employed for data acquisition, fil-

tering and normalization;  

• better awareness of data uncertainties and model uncertainties;  

• better awareness that various approaches may lead to similarly good performance monitoring 

results. 

 

Over time, the community, both ship operators and solution providers, got smarter in best business 

practices for data acquisition and processing. Market and methods have seen consolidation, with mer-

gers and acquisitions of smaller companies, but also fusion of technologies in the performance moni-

toring process. There have also been more and more papers being presented at HullPIC with joint au-

thoring from solution providers and ship operators. 

 

In the early years, associated topics joined in the conference, mainly related to managing and improv-

ing ship performance (as opposed to just monitoring as covered by ISO 19030): 

 

• Developments in coatings and alternative fouling protection techniques (such as ultrasonic 

hull protection) 

• Robotic cleaning of ship hulls 

• Energy saving measures (propulsion improving devices, wind assisted propulsion systems, 

etc.) 

 

These are now redirected towards HIPER and PortPIC, striving for a clearer focus on performance 

monitoring and measuring technologies. The gaps left by these restrictions have been filled quickly by 

new developments: 
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• New monitoring issues related to IMO’s CII (Carbon Intensity Indicator) and EU fuel and emis-

sion regulations coming in 

• Looking beyond the scope of ship operation considered in ISO 19030, e.g. for propulsion (twin-

screw, CPP (controllable-pitch propeller), diesel-electric, or wind-assisted propulsion) and am-

bient conditions (shallow water, ice-infested water) 

• Development of methods yielding faster insight, deviating from ISO 19030’s traditional view 

of averaging performance indicators over one year 

 

Predictions are always risky, just remember how far off target Geir Axel Oftedahl and I were in our 

initial estimates on the popularity of HullPIC. But let’s look into the crystal ball. 

5. Looking forward 

 

“It is very hard to predict, especially the future”, said Niels Bohr, a Nobel prize winner. But the future 

is generally more interesting than the past. Another appropriate quote is: “Build it and they will come”. 

Jotun and I have every intention to keep building “it” (HullPIC), and it is likely that the community will 

continue to come – as long as we don’t degenerate into an old-boys club reminiscing about the past and 

presenting the same stuff under new titles. 

 

 
Fig.12: 2024 feedback in Richard Marioth’s questionnaire 

 

So far, the conference has managed to stay young and interesting, not least to the influx of new partic-

ipants and new entries to the performance monitoring market. The continuing and self-enforcing suc-

cess is largely due to two factors that make the winning formula for HullPIC, Fig.12: 

 

• Quality of presented papers – Papers come from experts in the field, not the silver-tongued me-

too salespersons and top managers. The HullPIC proceedings have contributed to the reputation 

of the conference, and have become a standard reference reflecting the state of the art in ship 

performance monitoring. 

• The networking – HullPIC differs from other conferences. It is hard to put into words how 

exactly, but there is a special atmosphere of collaboration rather than competition. And over the 

years, the HullPIC participants have formed a community. The mix of ship operators and solu-

tion providers is healthy and productive: “Part of the charm of HullPIC is that it attracts a hearty 
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mix of ship owners and operators matched with an equal number of technology and service 

providers,” Austin (2022). 

 

Both are needed. HullPIC is not a journal where you just add to your publication list, nor is it a cock-

tail conference.  

 

Vincent Joly (Bureau Veritas), participating for the first time in 2024, described the unique character of 

HullPIC perhaps best: “This [conference] is truly special, I have never experienced such a sincerity and 

collaborative spirit in Maritime. I [have now] the conviction that peer-to-peer knowledge sharing for a 

common interest is not just a good idea, it happens.” 
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Bunker Parcel Data Collection: Enhancing Emissions Reporting 

 

Matteo Barsotti, Oceanly, Genova/Italy, matteo.barsotti@theoceanly.com 

 

Abstract 

 

Accurate emissions reporting is a critical component of modern maritime operations, driven by the 

need for compliance with regulations such as the EU Emissions Trading System (ETS) and FuelEU, as 

well as the goal of optimizing operational costs. Achieving this accuracy requires a robust and 

configurable system for recording fuel consumption onboard ships, which must also be intuitive and 

user-friendly to ensure effective implementation. A method for bunker parcel reporting has been 

developed to address these needs. This approach involves recording detailed technical specifications 

for each fuel parcel received onboard, including quantity, category, viscosity, sulphur content, density, 

and lower calorific value (LCV). Additionally, it allows for tracking the use of each parcel, enabling 

precise calculations of emissions directly linked to actual fuel consumption. This enhancement to 

emissions reporting systems ensures a higher level of precision in data collection and calculations. By 

incorporating detailed fuel parcel data and usage timelines, the methodology significantly improves 

the reliability of emissions data, benefiting all stakeholders involved in regulatory compliance and 

operational monitoring. This presentation will explore the technical aspects and implementation of the 

bunker parcel reporting approach, demonstrating how it contributes to precise and transparent 

emissions reporting while aligning with industry requirements for accuracy and efficiency. 

 

1. Introduction 

 

An accurate reporting is what customers are seeking nowadays; it is maybe forced by emission 

regulations but more and more the very first question when presenting a data collection system is about 

validation and data accuracy. The emission regulations of course have driven the improvement of the 

software in terms of validation and accuracy but until very recently the system should be also flexible 

and allow adjustment from the ship or from the onshore users. Usually for emission reporting were 

reported just the Remains of board (R.O.B.) of the different fuel type available on board. This kind of 

reporting satisfy the majority of the monitoring method of the emission regulations. The game changer 

here is the biofuel but in general the FUEL EU MARITIME, the new regulations entered into force on 

January 1st 2025. 

 

Before diving deeply into the regulation in the next chapters, it is necessary to clarify what is meant by 

Fuel Product, Fuel Category, Fuel Category Group and Parcel: 

 

• Fuel Product is the name of the fuel bunkered, and it usually tells something about its 

characteristics but it does not tell much about all the emissions related characteristics, usually 

it is also the commercial name of the bunkered fuel. 

• Fuel Category is the emissions related categorization as per ISO8217 standard IMO and MRV 

regulations 

• Fuel Category Group refers to the type of category, if it is fossil (oil, gas, alcohol) , biofuel, or 

RFNBO (Renewable fuel from non-biological origins) 

• Fuel Parcel is the specific bunkered fuel onboard (maybe known as batch) 

 

It will be shown also that not only the regulations drive this kind of fuel reporting but also the needs to 

keep track of the fuel, maintain segregated and in case of commingling to know exactly what is to be 

commingled. 

 

2. Fuel EU and Biofuel 

 

The Fuel EU Maritime regulation entered into force this year, use the general principle of the well-

known EU MRV in terms of the voyage leg and port stay definition but did take in consideration the 
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energy associated to each part of the voyage or port; this energy comes from the fuel burned on board, 

from the electrical power used in the shore power connection but the real news is the fact that now it is 

taken into account the energy associated with the production of the fuel. Afterwords, the result is 

compared to a target energy and if not met there is a fuel penalty in Euro to be paid to be compliant.  

 

As the formula did use the real consumption associated with the specific characteristics of the fuel an 

excellent accurate reporting is vital and not only for the fossil fuel that have static characteristics but 

especially for the biofuels.  

 

 
 

Here are highlighted where the parcel management intervene, as the specific fuel characteristics shall 

be used for the calculation. 

 

The biofuels are quite unique in terms of emission related characteristics, two biofuels of the same 

category with similar viscosity can have different emission related characteristics. In other words, the 

parcel reporting is extremely important when reporting biofuels. Biofuels can also be blend so a mixture 

of fossil fuels and a biological component and again here a parcel solution is required in order to not 

mix the fuel in the reporting, so blends can be treated separately. 

 

3. Bunker Parcel solution 

 

The bunker parcel solution allows recording each batch of fuel using a unique identifier, this identifier 

can be ship specific and also customized by the customer. The system checks of course that this 

identifier is not used on the same ship and also in the fleet. 

 

The parcel can be then referenced to the consumption related to a specific activity and equipment; by 

doing this, the resulting calculation will be taking into account the exact characteristics of the fuel in 

use. Practically will be not applied any FIFO or LIFO logic.  

 

▪ FIFO means First In First Out and it is usually the logic applied onboard where the first fuel 

available in the tank is also the first to be used because of the fact that usually the fuel exit from 

the bottom of the tank.  

▪ LIFO means Last In First Out and it is the common behaviour of the emission reporting 

software where adding a fuel in the same fuel type will immediately updates the characteristics 

of the fuel itself.  

 

From emission regulation point of view, there was no difference between LIFO and FIFO but there was 

a difference from other two point of view: 

 

• Sulphur 

• Engine performance 

 

The sulphur content is managed but the IMO 2020 regulation and by ECA areas regulation, but such 
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regulations are just limits of the sulphur content, therefore if the sulphur content is 0.33 or 0.37 nothing 

change for the regulation but it did change when it is necessary to calculate the sulphur emissions. 

 

The engine performance is affected by the fuel that is in use and in a monitoring system either is using 

high frequency or manual input data, it is important to have recorded the correct information. i.e. not 

having an updated Heat of Combustion will result in having a wrong Specific Fuel Oil Consumption. 

 

These are other two reason why a bunker parcel solution is much more realistic and accurate.  

 

Let us now have a look at the new feature of the system, the bunker parcel solution can be applied in 

the system to all fuels (fossil, biofuels and RFNBO) or just to biofuels according to the specific needs 

of the customer. The proper process is distinguished into 2 parts, the fuel bunkering form and the 

consumption recording. 

 

3.1. Bunkering Form 

 

The fuel bunkering form allows recording all the important and required information: 

 

• Unique identifier 

• Quantity 

• Category 

• Viscosity 

• Density 

• LCV 

• Water content 

• Sulphur content 

 

In case of biofuel, it is also possible to record: 

 

• Type of raw material 

• Emission intensity E 

• POS Proof of Sustainability number 

• EU RED compliant 

 

As those last values are available from the POS document, it may require several weeks to receive such 

information so the mentioned fields are not mandatory during the insertion of the fuel bunkering form 

but they become required whenever the fuel will be used and then the vessel report will remains in 

status draft until the information will be added.  

 

3.2. Consumption recording 

 

As already explained, the emission related information became important or better mandatory when the 

fuel is actually used. So whenever the fuel is used the first time it will be asked to record the missing 

information (if any). Then the fact that there is a consumption of course will reduce the quantity of fuel 

of the specific parcel and then there is a validation on the maximum consumable amount (it cannot be 

consumed more than what is available). 

 

The user will be then able to select for each equipment the fuel type used, the exact parcel of the fuel 

type selected and in case add the emission characteristics. 

 

This simple recording will generate the correct recording for the Fuel EU maritime, all the other 

emission regulations and, as said, all the engine parameters. 
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3.3. Next Possible Steps 

 

The procedure explained here has one limitation, no commingling is allowed, unless a de-bunkering 

and a new bunkering is created but of course calculations of the emission parameters should be done 

externally. The next possible step is to create a specific commingling operation to allow mixes of the 

fuel already on board, but it has to be seen what really happens in this and next years, maybe other 

modification to the software will be needed. 

 

4. Conclusions 

 

As Latins said “Scripta manent, verba volant” let’s write it down what means have a reliable reporting 

using the bunker parcel solution. Let’s imagine having on board 100 tons of biofuel from waste cooking 

oil with an emission intensity of 7.5 and loading a new batch of 50 tons of biofuel same from waste 

cooking oil but with an emission intensity of 13.2. Now with a system without parcel management, the 

total biofuel is 150 tons with an emission intensity of 13.2; if we then imagine having 10 MT 

consumption of the first batch and 10 MT of the second batch, we have the following results: 

 

Assuming fwind =1, C, K and TtW are same in both case 

 

➢ Case no parcel: GHG intensity = 1 * [(10 * 13.2 * C + 10 * 13.2 * C) / K] + TtW 

➢ Case with parcel: GHG intensity =1 * [(10 *7,5 * C + 10 * 13,2 * C ) / K] + TtW  

 

This illustrates that a small difference of 5.2 gCO2eq/MJ with just 20 MT can cause over a ship’s yearly 

consumption. 

 

As very well underlined it is of utmost importance have a robust and accurate reporting for emissions 

but also in general for performance monitoring. The new feature presented here goes in that direction 

allowing to have a strict and precise control of the bunker onboard allowing the operator on shore to 

have a clear situation of the bunkers on board, the emission regulation calculation, the reliable engine 

performance calculations and of course cost savings. 
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Abstract 

 

The calculation of key performance indicators (KPI) in ship performance monitoring relies on adequate 

performance values (PV). In ISO 19030 two performance values are defined: percentage speed loss 

and percentage power increase which basically represent speed and power deviations. These 

performance values serve as the most common performance values used in nowadays ship performance 

monitoring. However, their drawbacks related their speed-dependency have been already discussed. In 

addition to this, it is important to notice that these performance values are subjected to loading 

condition dependency as well. The ISO 19030 method addresses this issue with the averaging of 

performance values in reference and evaluation period for the calculation of key performance 

indicators. This could be the case if the operational profile of the ship does not change significantly 

through dry-docking period, which is unfortunately quite rare. In this paper, the simple numerical 

approach, based on a new method for the assessment of frictional resistance coefficient, for the 

assessment of fouling effects on ship hydrodynamic characteristics is proposed. The proposed method 

has been validated by comparison of the obtained results for fouling effects and results of CFD 

simulations published in the literature for one containership, bulk carrier and tanker ship and fouling 

with barnacles. Thereafter, a case study is prepared for which speed-dependency and loading condition 

dependency of the most common performance values are demonstrated. Finally, the challenges in 

finding suitable performance values for ship performance monitoring are discussed. 

 

1. Introduction 

 

Ship performance monitoring secures safe and environmentally friendly operation with minimal costs. 

It also helps in optimization of maintenance scheduling, raises awareness about equipment availability 

and monitors its rate of deterioration. The global standard of ship performance monitoring was 

published in ISO 19030, ISO (2016). It has been developed to be widely acceptable by shipbuilders, 

ship owners, engine manufacturers, coating companies, classification societies, the IMO etc. The goal 

of the standard it to enable ship owners and operators a comparison of hull and propeller solutions with 

simple and transparent method and data, that they can select the most efficient options for their vessels. 

Back in 2016, the standard was developed based on input from a wide range of representatives in the 

marine industry including academia and should as such represent the state of the art within performance 

monitoring. However, it soon became evident that the applicability of the standard was not as wide as 

intended, mainly because of the extensive filtering required by the method, which in many cases results 

in data scarcity and poor foundation for decision making. The introduction of various environmental 

regulations in the shipping industry has emphasized the importance of reliably documenting achieved 

energy savings and the evaluation of various energy saving measures. Namely, with numerous 

mitigation measures suggested by academia and industry which enable potential energy savings and 

also represent valuable investment, ship owners and operators are confronted with important need for 

making educated decisions, Sfiris et al. (2023). This strongly incentivized the development of various 

methods in ship performance monitoring and since the release of ISO 19030, lot of studies in the 

literature have been carried out in order to improve standard analysis, Gupta et al. (2024), Esmalian et 

al. (2023), Dalheim and Steen (2020), Taskar and Andersen (2023), Gundermann and McLaughlin 

(2019), Berthelsen and Nielsen (2021). 

 

Regardless of the applied model or method, every ship performance monitoring method relies on the 

calculation of PV (performance value) which are later on used in the determination of KPIs. PVs are 

calculated for every datapoint and then Performance Indicators (PI) are calculated by averaging PV in 
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reference and evaluation period. Obviously, if ISO 19030 standard is applied, the number of analyzed 

data points will be limited because only loading conditions which refer to sea trial conditions can be 

analyzed. In a case where ship performance model is used as reference model, more datapoints can be 

analyzed after certain filtering and corrections depending on model. 

 

Most studies in the literature refer to the advancements of ship performance models, filters and 

corrections and do not investigate much PVs and issues related to them. Few studies discussed 

drawbacks of the most common PVs: speed and power deviations, related their speed-dependency, 

Bertram (2017), Schmode et al. (2018). Bertram (2017) outlined two main problems related to PVs: 

fouling mostly causes changes in frictional resistance, which has more importance at lower speeds; and 

added resistance in waves depends strongly on speed, while the most common method for wave 

correction does not depend on speed. Additional effort to solve speed-dependency of these PVs is 

presented in Oliveira et al. (2018), introducing new PV and PI which can be used in performance 

monitoring – equivalent sand grain roughness (kS). However, due to the inability of estimating kS for 

negative power differences, the proposed algorithm still relies on finding median of power deviations 

in three months period and then finding kS for this value. The authors concluded that although their 

approach enables more reliable comparison between the vessels and against the vessel itself, the final 

result is still speed-dependent, Oliveira et al. (2020). Schmode et al. (2018) introduced a new hull 

performance index from the viscous components only. Using the assumption that the fouling will only 

affect viscous resistance, the authors have derived a performance value which is less speed dependent, 

however it requires accurate decomposition of ship total resistance and relies on certain additional 

assumptions. 

 

Except for speed-dependency of the most common PVs, these PVs are subjected to loading condition 

dependency as well. The ISO 19030 method addresses this issue with the averaging of PVs in reference 

and evaluation period for the calculation of PIs. This could be valid if the operational profile of the ship 

does not change significantly through dry-docking period, which is unfortunately quite rare. 

 

2. Method 
 

In order to demonstrate speed and loading condition dependency of speed and power deviations a 

relatively simple numerical approach is used. This approach relies on hypothesis that propulsive 

efficiency will not change dramatically due to the presence of fouling on the ship hull because of 

opposite effects of increasing hull efficiency and decreasing open water efficiency, Svensen (1983). 

Same hypothesis is applied in Oliveira et al. (2020) and confirmed in Song et al. (2020a), where the 

authors demonstrated that propulsive efficiency varies less than 2 % with increasing hull roughness if 

the propeller is clean using CFD simulations. With the application of this hypothesis the delivered 

power for fouled ship can be expressed as: 

 

𝑃𝐷𝑅 =
𝑅𝑇𝑅𝑣

𝜂𝑃𝑅
=

𝜌𝑣3𝑆𝐶𝑇𝑅

2𝜂𝑃𝑆
     (1) 

 

𝑅𝑇𝑅 is the total resistance of a fouled ship, 𝑣 is the ship speed, 𝜂𝑃𝑅 is the propulsive efficiency for 

fouled ship which is the same as the propulsive efficiency for smooth ship 𝜂𝑃𝑆, 𝜌 is the density of the 

water, 𝑆 is the wetted surface area, 𝐶𝑇𝑅 is the total resistance coefficient of a fouled ship. 

 

To adequately account for the effect of increased hull roughness on ship hydrodynamic performance, 

first the increase in frictional resistance coefficient (∆𝐶𝐹) has to be determined, which can be done with 

the Granville similarity law scaling method, Granville (1958). However, this method has been criticized 

lately in the literature, as it accounts for only a single value of friction velocity (uτ), and consequently a 

single roughness function value (ΔU+) across the entire flat plate. This approach is simplification, 

because it is well established that uτ can vary even on a flat plate, Demirel et al. (2017a). A novel 

method for predicting frictional resistance coefficient of a flat plate is presented in Farkas et al. (2021), 

where the authors presented the method which can account for varying uτ across the flat plate and in 

that way overcome this important disadvantage of Granville method. What is more, the method is 
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capable of taking into account the effect of heterogeneous roughness on frictional resistance. 

 

This method relies on Granville’s proposal for the determination of ΔU+ values with the local method 

without displacement thickness, Granville (1987): 

 

∆𝑈+ = (√
2

𝐶𝑓
)
𝑆

− (√
2

𝐶𝑓
)
𝑅

− 19.7 [(√
𝐶𝑓

2
)
𝑆

− (√
𝐶𝑓

2
)
𝑅

]    (2) 

 

at the same value of 𝑅𝑒𝑥𝐶𝑓, where 𝑅𝑒𝑥 represents the local Reynolds number and 𝐶𝑓 is the local 

frictional resistance coefficient, and the application of certain roughness function model for a given 

surface condition. The roughness function model applied in this study is Grigson type which is proven 

to be adequate for barnacle fouling in Demirel et al. (2017b): 

 

∆𝑈+ =
1

𝜅
𝑙𝑛(1 + 𝑘+)     (3) 

 

where 𝜅 is the von Karman constant and 𝑘+ is the roughness Reynolds number. 

 

Firstly, the flat plate has to be longitudinally discretized, and 𝑅𝑒𝑥𝑆 and 𝐶𝑓𝑆 have to be determined for 

every discretized point. Then uτR is iteratively calculated by equating Eqs. (2) and (3). After that, 𝐶𝑓𝑅 

and corresponding 𝑅𝑒𝑥𝑅 is calculated using the following equation: 

 

𝑅𝑒𝑥𝑅 =
𝑅𝑒𝑥𝑆𝐶𝑓𝑆

𝐶𝑓𝑅
      (4) 

The procedure continues as long as xR is lower than the length of the analyzed flat plate. 

 

This method allows the investigation of the effect of heterogeneous fouling on frictional resistance 

coefficient by simply having ΔU+=0 in the areas where fouling is not present. More details about this 

iterative algorithm can be found in Farkas et al. (2021). 

 

While the method for the prediction of frictional resistance coefficient of a flat plate has been thoroughly 

verified and validated in Farkas et al. (2021), a numerical approach for the prediction of fouling effects 

on delivered power still has to be validated. This is done by calculating ∆𝐶𝐹 using the method presented 

in Farkas et al. (2021) for fouling with barnacles and then evaluating the increase in total resistance 

and delivered power for one containership - KCS. The obtained results are thereafter compared to CFD 

results available in Song et al. (2020a) for KCS fouled with barnacles with the smooth propeller. The 

analyzed surface conditions, Table I, match the ones presented in Song et al. (2020a). 

 

Table I: Investigated surface conditions, Song et al. (2020a) 
Surface condition Barnacle height, 

mm 

Surface coverage, 

% 

Roughness length 

scale – k, μm 

S10% 1.25 10 24 

S20% 1.25 20 63 

S40% 1.25 40 149 

S50% 1.25 50 194 

M10% 2.5 10 84 

M20% 2.5 20 165 

M40% 2.5 40 388 

M50% 2.5 50 460 

B10% 5 10 174 

B20% 5 20 489 

 

In this method, the obtained increase in total resistance will be the same as the obtained increase in 

delivered power as propulsive efficiency is assumed to be the same for fouled and smooth ship: 
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∆𝑃𝐷 =
𝑃𝐷𝑅−𝑃𝐷𝑆

𝑃𝐷𝑆
=

𝑅𝑇𝑅𝑣

𝜂𝑃𝑅
−
𝑅𝑇𝑆𝑣

𝜂𝑃𝑆
𝑅𝑇𝑆𝑣

𝜂𝑃𝑆

=
𝑅𝑇𝑅−𝑅𝑇𝑆

𝑅𝑇𝑆
    (5) 

 

Therefore, even though propulsive efficiency will change with speed, this will not make any difference 

on the final power deviations. 

 

Since the analyzed conditions represents uniformly distributed roughness, i.e. barnacle fouling which 

is uniformly distributed, using the relationship proposed in Demirel et al. (2017b) roughness length 

scale – k, which goes into equation for deriving k+ can be determined: 

 

𝑘+ =
𝑘𝑢𝜏

𝜈
      (6) 

where 𝜈 is the kinematic viscosity coefficient. 

 

Consequently, real uniform barnacle fouling with various height and surface coverage can be replaced 

with uniformly rough surface having roughness height equal to k and described with Grigson roughness 

function model, Demirel et al. (2017b). 

 

An additional important disadvantage of Granville similarity law scaling method is that only increase 

in frictional resistance coefficient of equivalent flat plat can be studied and the influence on the 

remaining ship resistance characteristics cannot be performed Song et al. (2019). This disadvantage is 

also present in the method presented in Farkas et al. (2021), since this method is developed for the 

assessment of ∆𝐶𝐹 for flat plate. Several studies in the literature demonstrate that roughness causes 

changes in the remaining ship resistance characteristics and not only in frictional resistance. Thus 

Farkas et al. (2020) demonstrated that roughness causes slight decrease in ratio between frictional 

resistance coefficients of a ship and equivalent flat plate (kf). Song et al. (2019), Farkas et al. (2020a,b) 

demonstrated that roughness causes decrease in form factor, while Song et al. (2019), Farkas et al. 

(2020a,b) demonstrated that the presence of roughness causes the decrease in wave resistance 

coefficient. Even though the presence of roughness causes the decrease in form factor value, the viscous 

pressure coefficient - 𝐶𝑉𝑃 will increase due to the presence of roughness, just not with the same “pace” 

as 𝐶𝐹 and that is why form factor for rough ship will be lower in comparison to the smooth ship. 

However, roughness decreases the wave resistance coefficient - 𝐶𝑊. While all before-mentioned studies 

represent CFD studies, the validation of such CFD approach for the prediction of biofouling influence 

on total resistance is presented in Song et al. (2020b), where also it was experimentally demonstrated 

that the presence of roughness causes the decrease in wave resistance coefficient. 

 

All those studies demonstrate the capability of CFD to adequately capture the impact of roughness on 

individual resistance components. Within these studies total resistance coefficient for rough ship is 

decomposed using following equation: 

 

𝐶𝑇𝑅 = (1 + 𝑘𝑅)𝐶𝐹𝑅 + 𝐶𝑊𝑅    (7) 

 

𝑘𝑅 is the form factor coefficient for rough ship obtained using double body simulations, 𝐶𝐹𝑅 the 

frictional resistance coefficient for rough ship obtained using double body simulations and 𝐶𝑊𝑅 the 

wave resistance coefficient obtained using a combination of free surface and double-body simulations. 

 

In order to obtain more reliable power deviations due to presence of roughness and compensate for 

inability to capture the effects of fouling on the remaining resistance components additional cases are 

also checked: KCS fouled with hard fouling, Farkas et al. (2020a), KVLCC2 fouled with hard fouling 

at 15.5 kn, Farkas et al. (2020a), and one handymax bulk carrier (BC) fouled with hard fouling at 16.32 

kn, Farkas (2021). The hard fouling was described using the same roughness function as for barnacles, 

just with different roughness length scales, Table II. 
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As discussed in Farkas et al. (2020c), even though form factor will slightly decrease due to the presence 

of roughness, it can be considered that 1+k value will not significantly change, meaning that the relative 

increase in CVP due to the presence of roughness will be quite similar to relative increase in CF. What is 

more, since only increase in frictional resistance for flat plate is available, which is slightly lower than 

increase in frictional resistance for ship, this will additionally compensate for slight reduction in form 

factor for fouled ship. During the analysis of results presented in papers dealing with impact of 

biofouling on ship hydrodynamic performance it was noticed that relative change in 𝐶𝑊 is usually equal 

to 1/3 of relative change in CVP. Therefore, the equation for calculation CTR used in this study is: 

 

𝐶𝑇𝑅 = 𝐶𝑇𝑆 + [1 + 𝑘𝑆 −
𝐶𝑊𝑆

3𝐶𝑉𝑃𝑆
𝑘𝑆] ∆𝐶𝐹   (8) 

 

where 𝐶𝑇𝑆 is the total resistance coefficient of smooth ship, 𝑘𝑆 is the form factor of smooth ship, 𝐶𝑊𝑆 

is the wave resistance coefficient of smooth ship, 𝐶𝑉𝑃𝑆 is the viscous pressure coefficient of smooth 

ship and ∆𝐶𝐹 is the increase in frictional resistance coefficient for equivalent flat plate obtained using 

the method presented in Farkas et al. (2021). 

 

The support for making such hypothesis lies in the fact that 𝐶𝑉𝑃 will increase due to the presence of 

roughness, while 𝐶𝑊 will decrease due to the presence of roughness. Also, both Granville similarity 

law scaling method and method presented in Farkas et al. (2021) predict ∆𝐶𝐹 for flat plate due to the 

presence of roughness. Even though, it was demonstrated that roughness will cause slight decrease in 

kf, kf will still be above 1, meaning that ∆𝐶𝐹 for ship will be slightly higher than for flat plate. Therefore, 

with such decomposition ∆𝐶𝐹 for flat plate can be used to represent change in total resistance 

coefficient: ∆𝐶𝑇 for a ship. 

 

Longitudinal discretization of flat plate representing investigated ships were made using very fine mesh 

(points were placed every 1 cm), since computational cost of this numerical calculation is quite low, 

i.e. typical simulation runs around 20 s. 

 

The results for the impact of hard fouling on total resistance coefficients are presented in Table II. Quite 

accurate results are obtained, with the highest relative deviation around 2.5 %, but for most of cases it 

is below 2 %. The obtained increases in ∆𝐶𝑇 for a fouled ships are captured with adequate trends, Fig.1. 

 

Table II: The validation study for hard fouling 

k, μm 
103CT, KCS 

CFD 

103CT, 

KVLCC2 

CFD 

103CT, BC 

CFD 

103CT, KCS 

equation (8) 

103CT, KVLCC2 

equation (8) 

103CT, BC 

equation (8) 

0 2.083 1.796 2.198 2.083 1.796 2.198 

2065 4.079 3.977 4.717 
4.153 

(1.83 %) 

4.038 

(1.54 %) 

4.607 

(-2.32 %) 

1475 3.886 3.755 4.425 
3.954 

(1.75 %) 

3.817 

(1.65 %) 

4.367 

(-1.32 %) 

923.5 3.623 3.478 4.112 
3.703 

(2.21 %) 

3.539 

(1.74 %) 

4.065 

(-1.16 %) 

659.64 3.458 3.299 3.915 
3.540 

(2.38 %) 

3.368 

(1.77 %) 

3.869 

(-1.19 %) 

413 3.254 3.096 3.665 
3.334 

(2.48 %) 

3.137 

(1.02%) 

3.622 

(-1.16 %) 

295 3.122 2.947 3.507 
3.200 

(2.51 %) 

2.978 

(1.06 %) 

3.461 

(-1.30 %) 
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Fig.1: The validation study for hard fouling: KCS (upper), KVLCC2 (middle) and BC (lower) 

 

After the validation study for hard fouling, where the obtained total resistance coefficient for fouled 

ships is compared with the results from CFD studies, we decided to also compare the results obtained 

delivered power for ship fouled with barnacles using the proposed method and CFD study available in 

the literature, Song et al. (2020a), Table III. The proposed numerical approach is capable of adequately 

capturing the effects of fouling on the ship delivered power and total resistance. The highest relative 
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deviation (RD) from the CFD results in the prediction of RT is lower than 1 %, while for the prediction 

of PD these values are lower than 2.6 %. Fig.2 shows the obtained ∆𝐶𝑇. The proposed method adequately 

captures the trend of ∆𝐶𝑇. Considering two hypothesis used in the this method, i.e. Eq.(8) and 𝜂𝑃𝑅 =
𝜂𝑃𝑆, the achieved level of accuracy in comparison to current state of the art – CFD simulations for the 

prediction of roughness effect on ship hydrodynamic characteristics is quite satisfactory and it can be 

concluded that this method can be used for the evaluation of hull roughness effects on ship 

hydrodynamic performance. 

 

Table III: The validation study for fouling with barnacles 

k, μm 
RT, kN 

CFD 

PD, MW 

CFD 

ηP 

CFD 

RT, kN 

Present method 

PD, MW 

Present method 

ηP 

Present method 

0 1523.2 27.00 0.697 1523.2 27.00 0.697 

24 1799.5 31.39 0.708 
1802.6 

(0.18 %) 

31.95 

(1.80 %) 

0.697 

(-1.59 %) 

63 1956.5 34.03 0.710 
1964.2 

(0.39 %) 

34.82 

(2.31 %) 

0.697 

(-1.88 %) 

84 2011.8 34.97 0.710 
2020.6 

(0.44 %) 

35.82 

(2.42 %) 

0.697 

(-1.94 %) 

149 2134.7 37.06 0.711 
2145.3 

(0.50 %) 

38.03 

(2.61 %) 

0.697 

(-2.06 %) 

165 2157.9 37.47 0.711 
2169.3 

(0.53 %) 

38.45 

(2.62 %) 

0.697 

(-2.04 %) 

174 2170.3 37.70 0.711 
2182.1 

(0.54 %) 

38.68 

(2.60 %) 

0.697 

(-2.00 %) 

194 2195.7 38.15 0.711 
2208.6 

(0.59 %) 

39.15 

(2.62 %) 

0.697 

(-1.98 %) 

388 2373.9 41.40 0.708 
2394.8 

(0.88 %) 

42.45 

(2.54 %) 

0.697 

(-1.61 %) 

460 2423.3 42.31 0.707 
2445.3 

(0.91 %) 

43.35 

(2.45 %) 

0.697 

(-1.50 %) 

489 2441.5 42.62 0.707 
2462.2 

(0.85 %) 

43.64 

(2.40 %) 

0.697 

(-1.52 %) 

 

 
Fig.2: The validation study for fouling with barnacles, KCS 
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3. Results and discussion 
 

This section is organized in two parts: case study in which the speed and loading condition dependency 

of the most common performance value: power deviation is demonstrated, and two examples from in-

service data in the end of dry-docking (DD) period are analyzed in order to further discuss the challenges 

associated with the performance values for ship performance monitoring. 

 

3.1. Demonstration of speed and loading conditions dependency of power deviations 

 

To demonstrate speed and loading condition dependency of power deviations, two sets of towing tank 

test results are utilized: one for post-panamax containership and one for very large LPG carrier. Due to 

the confidentiality the main particulars of these two vessels could not be presented within this paper. 

The extrapolated results of towing tank tests for containership are available for design and ballast 

loading condition and speeds from 22 kn up to 30 kn (depending on loading condition), while for LPG 

carrier results are available for design, scantling and ballast loading conditions. 

 

As already mentioned, power deviations of effective power will be the same as deviations of delivered 

power using the method presented in Section 2. In a case where ship propeller is also fouled, propulsive 

efficiency will decrease, Farkas et al. (2020d), Song et al. (2020a), which will mean that deviations of 

delivered power are higher for such case than deviations of effective power. 

 

The speed and loading condition dependencies of power deviations are evaluated for fouling with 

barnacles characterized with surface condition M10%, Table I. The obtained results for containership 

are presented in Table IV, while the obtained results for LPG carrier are presented in Table V. 

Longitudinal discretization of equivalent flat plates were made using very fine mesh (points were placed 

every 1 cm). The obtained power deviations for both cases are presented in Fig.3. 

 

From the obtained results it is clear that power deviations experience quite high loading condition 

dependency as well as speed-dependency. Speed dependency is more pronounced in for the 

containership in design loading condition where power deviation deviates from average value by  

19.4 % at the lowest speed and by -28.2 % at the highest speed, while for ballast condition power 

deviation deviates from average value by 7.3 % at the lowest speed and by -9.9 % at the highest speed. 

Speed dependency for LPG carrier is also present: power deviation for design condition deviates from 

average value by 5.4 % at 16 kn and by -10.8 % at 19 kn, for scantling condition deviates from average 

value by 3.2 % at 16 kn and by -4.5 % at 18 kn, while for ballast condition power deviation deviates 

from average value by 9.3 % at 13 kn and by -7.9 % at 20 kn. 

 

Table IV: Results for containership 
Loading condition Speed, kn 1000 × 𝐶𝑇𝑆 1000 × ∆𝐶𝑇  Power deviations, % 

Design 22 1.830 0.692 37.80 

Design 23 1.846 0.694 37.57 

Design 24 1.894 0.690 36.41 

Design 25 1.983 0.678 34.20 

Design 26 2.121 0.658 31.02 

Design 27 2.211 0.627 27.05 

Design 28 2.317 0.583 22.58 

Ballast 24 2.566 0.581 22.64 

Ballast 25 2.600 0.578 22.22 

Ballast 26 2.633 0.574 21.81 

Ballast 27 2.651 0.570 21.33 

Ballast 28 2.671 0.563 20.72 

Ballast 29 2.718 0.554 19.96 

Ballast 30 2.777 0.542 19.00 
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Table V: Results for LPG carrier 
Loading condition Speed, kn 1000 × 𝐶𝑇𝑆 1000 × ∆𝐶𝑇  Power deviations, % 

Design 13 1.896 0.692 36.48 

Design 14 1.864 0.706 37.87 

Design 15 1.849 0.717 38.76 

Design 16 1.846 0.726 39.29 

Design 17 1.864 0.731 39.19 

Design 18 1.986 0.718 36.16 

Design 19 2.117 0.704 33.24 

Scantling 13 1.909 0.702 36.79 

Scantling 14 1.888 0.715 37.89 

Scantling 15 1.877 0.726 38.67 

Scantling 16 1.876 0.734 39.14 

Scantling 17 1.900 0.738 38.85 

Scantling 18 2.010 0.728 36.24 

Ballast 13 2.196 0.731 33.29 

Ballast 14 2.278 0.729 31.99 

Ballast 15 2.367 0.724 30.60 

Ballast 16 2.416 0.725 30.00 

Ballast 17 2.435 0.729 29.92 

Ballast 18 2.446 0.733 29.98 

Ballast 19 2.469 0.736 29.79 

Ballast 20 2.578 0.723 28.05 

 

 

 
Fig.3: The obtained power deviations for containership (upper) and LPG carrier (lower) 
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The maximum power deviation is usually obtained for lower speeds where viscous resistance is 

dominant, while the minimum of power deviations is always obtained at the highest investigated speed. 

However, there are cases where the maximum power deviation will not always be obtained for the 

smallest investigated speed, which can be explained by the fact that with the increase in speed ∆𝐶𝐹 

increases as well, due to higher roughness Reynolds number, k+. 

 

From Tables IV and V and Fig.3, it is also evident that power deviations depend on loading condition 

of a ship. While there is no obvious difference between scantling and design loading conditions for the 

LPG carrier, power deviations are significantly different for ballast loading condition. Thus at 16 kn for 

scantling and design loading condition power deviation value is equal to 39.1 % and 39.3 %, while for 

ballast loading condition power deviation is equal to 30 %. 

 

The same difference between design and ballast condition is noticed for containership, where the power 

deviation value for design condition at 24 kn is equal to 36.4 %, while for ballast condition is equal to 

22.6 %. From the obtained results it can be concluded that power deviations for design and scantling 

loading condition can be considered as one – laden condition and then there is no big loading condition 

dependency. However, it is important to distinguish power deviations obtained for ballast and laden 

conditions, because in ballast condition, significantly lower values of power deviations are obtained for 

same hull surface condition for the investigated ships. For homogeneous fouling present on the entire 

wetted surface area, it can be assumed that power increase for same fouling condition and same speed 

will always be higher in laden condition. This is supported by the fact that form factor value, as well as 

total resistance coefficient is usually higher in ballast condition in comparison to laden condition, 

because ship is usually optimized for design loading condition, while ∆𝐶𝐹 will not be significantly 

affected by loading condition. 

 

Therefore, during averaging power deviations - which is prerequisite for calculating PI, one has to be 

careful if ship changes its operational profile, because the final value of calculated PI will be 

significantly affected by speed and loading condition dependency. 

 

3.2. Examples from in-service data 

 

Both speed-dependency and loading conditions dependency of power deviations will cause significant 

amount of scatter in performance plot if not treated adequately. In order to make additional support for 

such claim, in-service data in the end of dry-docking (DD) period of two crude oil tankers have been 

analyzed. Due to the confidentiality of in-service data and coating info, only limited information can be 

provided. Both vessels were coated with a non-Hempel self-polishing copolymer (SPC) coating and 

during the DD period several underwater events occurred, including propeller and hull cleanings. Only 

last two voyages before DD were analyzed: laden and ballast voyages, which occurred without any idle 

periods nor underwater events between them. It should be noted that for both ships first laden voyage 

took place (3 weeks for Ship 1 and 2 weeks for Ship 2) and then ballast voyage took place (3 weeks for 

Ship 1 and 4 weeks for Ship 2). After ballast voyages both ships went immediately to DD. 

 

In-service data was processed and measured shaft power was filtered and environmentally corrected. 

Consequently, the shaft power under steady-state conditions, corresponding to calm water condition, 

was obtained. Furthermore, the Hempel’s Digital Twin model, which represents ship performance 

model, is used for building up reference performance level for the clean ship. Hempel’s Digital Twin 

model is capable of making predictions of reference performance level for both ballast and laden 

conditions, and by scaling the model to data from the first year after DD, a reliable estimate for the 

clean ship performance is obtained for all loading conditions. Using the environmentally corrected shaft 

power and reference power level estimated with Hempel’s Digital Twin model, power deviation value 

for every datapoint which survived filtering can be calculated, as well as power increase (difference of 

average power deviation in analyzed voyage and in reference period), Table VI. What is more, in-

docking conditions of the two analyzed ships are presented in Table VII. Note that propellers of both 

ships were not fouled due to several propeller polishing during the DD period. 
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As can be seen from Table VI, both ships during the voyages have kept relatively constant speed and 

for Ship 1 this speed was quite similar in both voyages, around 12.5 kn, while for Ship 2 the speed 

slightly varied depending on the voyage. Therefore, it can be concluded that the results for Ship 1 

indicate solely loading condition dependence, while for Ship 2 both speed and loading condition 

dependence is present. 

 

Table VI: Results for two analyzed ships 
Voyage Average 

speed, kn 

Standard 

deviation of 

speed, kn 

Power increase, % 

Design, Ship 1 12.3 0.56 26.5 

Ballast, Ship 1 12.7 0.72 20.6 

Design, Ship 2 12.9 0.64 17.0 

Ballast, Ship 2 13.9 0.68 32.2 

 

Table VII: The in-docking condition of analyzed ships 

Area 
Hard 

fouling 
Weed Slime Corrosion 

Coating 

damage 

Ship 1 – boottop / / / 10 % 5.5 % 

Ship 1 – vertical 

bottom 

2.5 % 

Moderate 

65 % 

Moderate 

10 % 

Light 
6 % 1.5 % 

Ship 1 – flat 

bottom 

0.5 % 

Light 
/ / / / 

Ship 2 – boottop / / / 10 % 6 % 

Ship 2 – vertical 

bottom 

1 % 

Light 

30 % 

Moderate 

40 % 

Light 
3 % 20.5 % 

Ship 2 – flat 

bottom 
/ / / / / 

 

By checking the in-docking condition, it is clear that Ship 1 was more fouled than Ship 2. However, if 

the average power increase for these last two voyages combined is calculated, for both ships roughly 

same value is obtained: 23.3 %. This suggests that it can be quite challenging to estimate hull surface 

condition using averaging of power deviations without any checks of speed or loading conditions 

dependency. 

 

There are several reasons which explain the final result. First of all, fouling could grow during the 

voyages and also in between them, but since there were no idle periods, it can be assumed that this 

increase over one and a half months would not be significant. Secondly, for Ship 1 where we can 

monitor loading condition dependence more clearly than for Ship 2, for laden voyage higher power 

increase is obtained, even though ballast voyage occurred after it. This supports the result presented in 

the previous section and highlights the difficulties which one could face if a simple averaging of all 

power deviations is used, regardless of loading condition. The opposite trend was obtained for Ship 2, 

where higher power increase was obtained for ballast voyage, which also occurred at higher speed and 

after laden voyage. So even though there is for sure some speed-dependency bias within this result and 

also some time dependency bias, significantly higher power increase value is obtained in ballast voyage. 

By checking report of in-docking condition in more detail, interesting pattern was noticed for these two 

ships. Namely, while fouling was relatively homogenously dispersed along the hull of Ship 1, the 

highest amount of fouling for Ship 2 was actually present significantly below the laden draught and 

mostly all fouling was present below the ballast draught. Since percentage of surface coverage were 

given for laden draught in Table VII, it is obvious that those percentages would be significantly higher 

for ballast draught for Ship 2 and would directly cause higher power increase value. This demonstrates 

the importance of heterogeneous fouling patterns which typically occur during DD periods and clearly 

explains why significantly higher power increase is obtained in ballast voyage for Ship 2 in comparison 

to laden voyage. To sum up, even if there would not be any physical loading condition dependence 

(which is not the case), additional problem related to heterogeneous fouling could potentially cause 

significant challenges during the simple averaging process. 
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Therefore, during the ship performance analysis, especially when standard performance values are used, 

it is important to analyze the obtained performance indicators always with speed-dependency and 

loading conditions dependency on the mind. Additionally, within this study it was considered that 

propeller is not fouled, which could be the case if propeller polishing is regularly performed. However, 

in a case of fouled propeller, additional source of uncertainty would be imposed on the obtained results. 

There are several proposals in the literature regarding the separation of hull and propeller degradation, 

one of them is presented in Carchen and Atlar (2020), but in order to get accurate result thrust must be 

measured, which is more difficult in comparison to measurements of shaft torque. Because of this, still 

there are not that many cases in the shipping industry where thrust measurements are performed. 

Consequently, in a case where propeller polishing is not regularly performed, the one has to accept 

additional level of uncertainty in some of the obtained performance indicators. 

 

There are some proposals in the literature and shipping industry for performance values or performance 

indicators which are less speed dependent or loading condition dependent, however they rely on 

additional modelling, which will increase the uncertainty of the obtained results in the end from 

different perspective. 

 

4. Conclusion 
 

Within this study, a relatively simple numerical method is used to predict the effects of idealized 

homogeneous fouling conditions on the delivered power of a ship. The method is validated by 

comparisons of the obtained results with results of CFD simulations published in the literature for one 

containership, bulk carrier and tanker ship and fouling with barnacles. Thereafter, on a case of one 

containership and one LPG carrier, it was clearly demonstrated that the effect of speed-dependency and 

loading conditions dependency should not be neglected during the averaging process. To additionally 

support such claim, two examples from in-service data are further analyzed. Within this analysis, it is 

clearly demonstrated that aside from physical speed and loading condition dependency, the most 

common performance value can be also significantly affected by heterogeneity of hull fouling. It can 

be concluded that both speed-dependency and loading condition dependency of power deviations will 

cause significant amount of scatter in performance plot if not treated adequately. Therefore, it is always 

important that the obtained results of performance analysis are interpreted by experts with thorough 

understanding of underlying methods and models as well as their potential pitfalls or challenges. 
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Abstract

 

Computational Fluid Dynamics (CFD) calculations at ship scale are very popular nowadays. 

International Maritime Organisation (IMO) recognised CFD for speed and power prediction in 2021 

but suggested an intensive validation process (later enhanced by IJACS in 73 procedures) to ensure 

numerical simulations provide adequate results. Nevertheless, all existing ship scale validation cases 

were developed during self-propulsion sea trials (what would be an alternative, right?). However, it 

would be nice to look at performances and efficiencies, not only the combined system hull+propeller 

but also separately to have a deeper look at the components. Hence, full-scale resistance trials (bare 

vessel hull without a propeller) would be desired. But how to perform them? Recent brainstorming 

concluded that these trials (with tugboats?) are very difficult to execute. Surprisingly, the solution was 

not found looking ahead, but actually in the past! Brilliant researchers managed to solve this puzzle in 

an elegant way 75 years ago. They proposed and installed jet engines on a specially prepared vessel to 

perform resistance trials without propellers (who needs propellers if you have jet engines?). In 2024, 

this unique test case made a triumphal return to maritime science and gathered the largest community 

of CFD practitioners to compare and validate their results. This paper outlines the main steps of the 

unique sea trials and CFD comparison.  

 

1. Introduction 

 

JoRes Joint Research Project (www.jores.net) was launched in 2019 with the aim of performing sea 

trials on actual vessels and collecting data for CFD validation. The data collection methodology was 

more stringent than the usual sea trial procedures. In addition to the ISO15016 standard of sea trials 

conduction, it was essential to pay significant attention to details usually omitted during, for example, 

vessel delivery sea trials—for example, hull and propeller roughness measurements.  

 

Another wish was noted during the project preparation phase: ship-scale resistance trials (on a vessel 

without propellers). These trials would significantly enhance the knowledge and understanding of ship 

performance because they could help to decouple the hull and propeller performance. The question is 

how to perform these trials. One of the options would be to tow the subject vessel with another vessel. 

For example, this approach was successfully executed by William Froude, Froude (1874), with the 

famous towing experiments of HMS Greyhound. Another noticeable experiment of this kind was the 

towing tests of HMS Penelope in 1974, Canham (1974). Unfortunately, this kind of experiment has a 

significant disadvantage – the towing vessels ahead of the subject vessel create wake and waves, which 

makes the measurements of the subject vessel not scientifically accurate. Another option would be to 

find a place with significant current and moor the subject vessel there. But again, the speed profile of 

these measurements would not be the same as for the “clean” resistance tests. 

 

So, the JoRes team thought that nowadays, it is practically impossible to perform these kinds of tests 

and more time would be needed to develop more innovative solutions in the future to solve this puzzle.  

Surprisingly, the solution was found by chance, and it was in the past rather than the future.   
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2. Sea trials on Lucy Ashton in 1950-1951 

 

On 8 September 1950, people living on the Gareloch lake in Scotland were puzzled by the weird sound. 

They thought a jet plane was flying somewhere at a lower altitude, but the sky was clear. They were 

surprised to see a vessel with four jet engines sailing in the lake…  

 

Lucy Ashton was a paddle steamer in service in Clyde, UK, from 1888. She retired from service in 1949 

and was acquired by BSRA (British Ship Research Association) to perform full-scale resistance 

measurements. For this purpose, the machinery, paddlewheels, and deckhouses were removed, four jet 

engines were installed on the deck, and a sound-resisting wheelhouse was constructed. Two large steel-

hinged flaps were fitted to stop the vessel. 

 

Denny (1951) shows details of jet installation, thrust measurement methods and instrumentation for the 

trials (ship speed, wind speed and direction, rudder angles, automatic observer (a panel of instruments 

in the wheelhouse was photographed every 10 s), and two pitot logs). Thrust gauges were calibrated 

before and after each day’s trials. Double runs were made in Gareloch, Scotland. The water temperature 

and density were measured, the draughts measured before and after trials, and dynamic trim was noted 

using a trim board. 

 

  
Fig.1: Lucy Ashton as a paddle steamer (left) and transformed into a research vessel (right) 

 

 
Fig.2: General arrangements of the Lucy Ashton with four jet engines 

 

 
Fig.3: 3D model of the hull created in 2024 based on the drawings 

 

Full program of the trials included (5-15 kn): 

 

1. Clean naked hull having a red oxide paint surface and sharp seams (the shell plates had flush 

butts): Denny (1951) and Conn et al. (1953).  

2. As (1) above but with a bituminous aluminium paint surface: Denny (1951) and Conn et al. 

(1953). 

3. Clean hull with red oxide paint surface and dummy twin-screw bossing: Lackenby (1954). 
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4. Clean hull with red oxide paint surface and dummy twin-screw “A” brackets and shafts: 

Lackenby (1954). 

5. Clean naked hull having a red oxide surface and seams faired off with a plastic composition: 

Denny (1951) and Conn et al. (1953). 

6. As (5) above but with a bituminous aluminium paint surface: Denny (1951) and Conn et al. 

(1953). 

7. Naked hull with bituminous aluminum paint surface allowed to foul for about one month: 

Smith (1955). 

8. Acceleration and retardation tests: Smith (1955). 

 

2.1. Hull lines 

 

No original drawings were found in 1950, so the offsets were carefully measured while the vessel was 

on a slip. The hull was in good condition. The wetted surface area, including the rudder and bar keel, 

was measured as 4,488 sq ft (416.95 m2). Hull lines and offsets are shown in Conn et al. (1953). In 2024, 

based on these offsets, Chalmers University built a new 3D geometry for the CFD simulations, Fig.3.  

 

2.2. Hull roughness measurements  

 

Two thin layers of “filler” or rivet cement and two coats of ordinary red oxide paint were applied to 

make it comparable with freshly painted plates of a new steel vessel. The only excrescences on the hull 

were the longitudinal overlapped seams of 1/4 in (6.35 mm) thickness. 

 

Two roughness records were taken at the ten stations on both sides when in the dock before and after 

trials. Three types of instruments were used: a wall gauge, an aerofoil gauge, and a talysurf machine. 

 

The measured equivalent sand grain roughness (Ks) was reported as follows: 

 

1. Sharp seams with red-oxide paint (normal clean service condition) Ks 0.0038 in (97 µm) 

2. Faired seams with red-oxide paint: Ks = 0.0029 in (74 µm) 

3. Sharp seams with bituminous aluminium paint: Ks = 0.0029 in (74 µm) 

4. Faired seams with bituminous aluminium paint (smooth hull surface tested): Ks 0.0023 in (58 

µm) 

 

2.3. Uncertainty analysis 

 

At 10 kn, speed measurement accuracy was in the order of one-tenth of one per cent. Thrust accuracy is 

approximately ±5lb for each engine. At 5 kn (2 engines), the error was 1.5% of resistance, and at top 

speed, 14.75 kn (4 engines), 0.17%. Rudder angles are negligibly small.  

 

2.4. Model tests  

 

Six models of lengths 9, 12, 16, 20, 24, and 30 ft (2.7 m, 3.6 m, 4.9 m, 6.1 m, 7.3 m, and 9.1 m) 

corresponding to the scales 1/21.167. 1/15.875. 1/11.906, 1/9.525, 1/7.938, and 1/6.35 were built. The 

following conditions were considered for a few scale models: 

 

1. Sharp seams with red-oxide paint (normal clean service condition) 

2. Faired seams with red-oxide paint 

3. Sharp seams with bituminous aluminium paint 

4. Faired seams with bituminous aluminium paint (smooth hull surface tested) 

 

The tests were first made without trip wires and then repeated with trip wires of 0.036 in (0.9 mm) 

diameter fitted at 5% of the length abaft the stem. (the effect of trip-wire was very small, varying from 

a maximum of 2% on the 9 ft (2.7 m) model to a fraction of 1% on the larger models). The 30 ft (9.1 m) 

model was tested in deep (18 ft or 5.5 m) and shallow water (11 ft 6 in or 3.5 m) conditions. 
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2.5. Ship model correlation with bossings and shaft brackets 

 

Additional trials were performed with bossings and shaft brackets, which were simulated with sheet 

steel weldments. The ship trials were carried out with the hull in normal service conditions (clean hull, 

sharp seams with red-oxide paint). Model tests with bossings and shaft brackets were performed on six 

models: 9 ft, 12 ft, 16 ft, 20 ft, 24 ft, and 30 ft (2.7 m, 3.6 m, 4.9 m, 6.1 m, 7.3 m, and 9.1 m). 

 

2.5. Sea trials with fouled hull  

 

In addition to the trials outlined above, additional trials were performed to investigate the effect of 

fouling on resistance corresponding to various periods of immersion at different times of the year. 

 

Faired seams, the vessel had a bituminous aluminum paint surface and no special anti-fouling properties 

(equivalent sand grain roughness Ks = 0.0023 in or 58 µm).  

 

Trials on 1 May 1951 – 24 days out of dock (equivalent Ks = 0.0046 in or 117 µm). 

Trials on 7 June 1951 – 30 days out of dock (equivalent Ks = 0.007 in or 178 µm). 

Trials on 4 June 1951 – 58 days out of dock (equivalent Ks = 0.0135 in or 343 µm). 

 

2.6. Acceleration and retardation trials 

 

Acceleration and retardation trials were performed, from which the virtual mass of the ship was 

determined. 

 

Two sets of acceleration and retardation trials: the first on 1 May (24 days out of the dock) and the 

second on 7 May 1951 (30 days out of the dock): 

 

1. 1 May tests: 5 complete tests (two with a speed of 12 kn and three with a speed of 14.5 kn). 

2. 7 May tests: one at speed 13.75 kn and the other at 14.5 kn. 

 

2.7. Boundary layer measurements with pitot tubes 

 

Two pitot logs were fitted close to the middle line: N1 72 ft 6 in (22.098 m) and N2 97 ft 4 in (29.67 m) 

aft of the forward perpendicular. 

 

For these measurements, only the following results are available: 

 

1. N1 Clean hull, sharp seams, and red-oxide paint (5.45, 10.07, and 14.24 kn); Boundary layer 

thickness at N1 pitot is in the order of 12 in (0.3 m). 

2. N2 Clean hull, faired seams and aluminum paint (10.18 kn) and after 58 days out of dock (10.3 

kn). Boundary layer thickness at N2 pitot is in the order of 18 in (0.46 m). 

 

2.8. General conclusions made by the authors in 1951 

 

1. Fairing the seams reduced the total resistance by about 3%. 

2. Painting the hull with smoother bituminous aluminium paint instead of red oxide reduced the 

total resistance by a further 3%.  

3. A general but light scattering of small barnacles (about 1/8 in high) on the flat bottom in 

association with a band of fine grasses on the sides gave rise to an increase in the measured 

resistance of 42%, 29%, and 21% at speeds of 6, 12 and 14 kn, respectively. This corresponds 

to an increase in the estimated skin-frictional resistance of 50%.  

4. The added virtual mass of the ship was on the order of 5%, and there was no significant variation 

in speed. 
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3. Lucy Ashton CFD workshop 2024  

 

On 25 September 2024, a group of researchers entered a room at the Chalmers University of Technology 

in Gothenburg, Sweden, to discuss the CFD results of the first ship-scale resistance workshop…  

 

As discussed in the previous chapter, BSRA collected impressive information about Lucy Ashton in 

1950-1951. They initially intended to understand hull performance under various conditions (different 

paints, bossings, brackets, and fouled conditions) and establish correlations with model test predictions. 

At that time, they could not foresee the development of numerical methods and the high demand for 

validation cases. Nevertheless, accurate reporting of all the details in 1950-1951 papers made using 

these results for CFD validation possible.  

 

3.1. Case description document developments 

 

Based on the careful analysis performed by Chalmers University, the case description documents for 

CFD calculations were developed. Because the sea trial results represent very comprehensive datasets, 

it was decided to simplify the simulation case for the first workshop (there is an idea to have a series of 

workshops to consider all the measured cases). Before announcing the CFD workshop, a preliminary 

study was made, Lopes et al. (2025), to ensure the test case was suitable for the workshop simulations. 

So, the requirements for the first workshop include only smooth hull calculations (zero roughness). 

Aerodynamic resistance was not included. 

  

Three sets of results were expected. The first set was a grid refinement study, using grids prepared by 

Chalmers University and provided to the participants. The second set consisted of simulations at ship 

scale for different speeds, and the third set was comprised of simulations at a constant Froude number 

for varying model sizes. 

  

3.2. Geometry file  

 

Based on the offset table and hull lines published by Conn et al. (1953), a 3D CAD model was      

generated, Fig.3. This model did not include overlapping steel plates but included the actual sagging of 

the vessel, as that was reproduced in the measured offsets. The geometry was prepared in various file 

formats.  

 

 
Fig.4: Structured mesh around Lucy Ashton's numerical model 

 

3.3. Workshop announcement and execution  

 

The announcement was made in early 2024 and attracted significant attention from the maritime 

industry. Many companies showed interest and signed up for the workshop. Even though the original 

BSRA reports 1950-1951 were in the public domain, the workshop organisers did not specify which 
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vessel it was and how the trials were performed. This was done deliberately to make the workshop with 

blind results. Of course, it is impossible to guarantee that no one could find and use the original reports. 

Still, it is believed the probability is relatively low as this test case is not widely known in the industry 

(have you heard about it before?). In the end, 47 results were submitted to Chalmers University before 

the deadline.  

 

 
Fig.5: Simulation of Lucy Ashton trials in CFD 

 

3.4. Workshop results 

 

On 25 September 2024, the participants met at the Chalmers University to discuss the results. Some 

came in person, and some joined online. A comprehensive analysis was performed, and the workshop 

proceedings will be available shortly. Fig.6 shows the results of the sea trials as reported in the 1950s 

documents. Additional work is being done to post-process these sea trial results according to the modern 

ISO15016 procedure, so the curve in Fig.6 may shift a bit.  

 

 
Fig.6: CFD results (smooth hull) vs. 1950 sea trials (post-processed under 1950th methods) 

 

The key results are: 

 

1. The predicted CFD values were below the sea trials curve, which is logical as the CFD runs 

were performed with the hydrodynamically smooth hull (zero roughness).  

2. As seen at the previous self-propulsion workshop, there is a noticeable spread of submitted 

results. Nevertheless, the standard deviation of all the results (the total ship resistance with the 

rudder) is on the order of 5% (5.5% at Fr=0.13, 4.09% at Fr=0.173, 4.75% at Fr=0.219, 4.97% 

at Fr=0.26 and 5.42% at Fr=0.304). 
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4. Conclusions  

 

Numerical methods open a new and exciting opportunity to help the industry design and build a new 

generation of ships. The key characteristic of this digital revolution is the ability to simulate and optimise 

a vessel numerically before the vessel is actually built. The challenge of this approach is the validation 

of digital tools – how to make sure the predicted performance will be the same as that of the actual as-

built vessel. To close this gap, a set of validation cases is needed in the industry to ensure the high 

performance of digital tools. Even though a few self-propulsion cases were developed within the JoRes 

project (www.jores.net), the remaining gap was the ship scale resistance measurements, which can help 

decouple the hull and propeller performance at actual Reynolds numbers. Even though it is nearly 

impossible for the present and potentially the future, apparently, it was made in the past. The brilliant 

researchers at BSRA (British Ship Research Association) performed these trials on the vessel Lucy 

Ashton in 1950-1951 by installing four jet engines on the deck. Detailed reports of these unusual trials 

made it possible to use this dataset for CFD ship-scale resistance simulations in 2024.  

 

Based on 40 submitted datasets, a reasonable standard deviation of 5% was achieved for the blind 

simulations (participants did not know the trials' results). This increased confidence in CFD methods, 

pushing the boundaries of CFD acceptance even further. 

 

Additional workshops are planned to explore the remaining results (various roughnesses, bossing, and 

brackets) reported in the original reports.  
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Abstract 

 

Neural networks have emerged as powerful, state-of-the-art tools for modelling complex system behav-

iours and dependencies. Predicting the power requirements of sea-going vessels, with all its environ-

mental complexity, seems like an ideal challenge for such an approach. Can we solely relay on the 

ability of the Machine Learning tools to prepare the models of system that has been a subject of complex 

simulations, statistics research, towing tank experiments? How can we merge the knowledge of more 

than 200 years of Naval Architecture discipline and combine it with power of modern Machine Learning 

algorithms to create a truly robust, hybrid approach? As the resemblance of human's ability to learn 

new skills, the primal goal of neural network algorithms is to minimize the error rates. Our ability to 

assess these error rates highly depends on the experiments conducted during our learning process, 

which are influenced by the operational conditions we’re able to record and examine. This can lead to 

a tendency to optimize accuracy of our predictions specifically for the tested environment, potentially 

overlooking the global domain. The purely neural network-based approach will be tending to minimize 

error rates in operating conditions where most data has been recorded. However, if we move beyond 

these familiar conditions our predictions can become highly error prone. Embedding the information 

about physics-based models describing vessel's operation characteristics can help us to predict scenar-

ios where very little data has been available for training, enhancing model robustness across a broader 

range of conditions. Research is focusing on implementation of the capabilities of neural networks to 

model complex systems basing on recorded data and combining the knowledge of physics-based models 

developed through hundreds of years of human activity in naval architecture research. By combining 

data-driven insights with established principles from the Naval Architecture models, this research aims 

to create hybrid approaches, that enhance predictive accuracy for conditions not covered by training 

data. 

 

1. Introduction 

 

According to UNCATD Review of maritime transport United Nations (2024), due to political and eco-

nomic events imposing vessel rerouting the average distances travelled per ton of cargo sustained the 

increasing trend with a shift from an average of 4675 miles recorded in 2000 to 5186 miles in 2024. 

Despite the technological advancements in maritime transportation efficiency, the challenges of accu-

rate route planning and technical performance monitoring are becoming more important for remaining 

competitive on the maritime transport market for charterers, brokers and ship technical managers. In 

order to support effective route planning and situation awareness for technical performance, the high-

quality operational data can be utilized with state-of-the-art machine learning technologies to build ves-

sel-operation model describing technical performance characteristics. The complexity of vessel’s oper-

ation environment and associated phenomena has been a subject of centuries of the naval architecture 

research domain. Recent advancements in machine learning technology have led to a growing interest 

in the field of regression problem-solving techniques. This has resulted in a growing potential for de-

scribing multidimensional environments where limited knowledge is available, or where the accurate 

modelling requires time-consuming and numerically intensive simulations. This has consequently led 

to the demonstration of regression problem-solving techniques as an accurate means of describing com-

plex systems such as seagoing maritime vessel’s propulsion power requirements. However, due to com-

mon nature of learning algorithms several challenges have been found resulting in limited confidence 
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of the model’s predictions. These challenges have formed new questions from the users and increasing 

presence of artificial intelligence in technology domain also imposed limited confidence to the model’s 

predictions. In circumstances where critical decision-making exerts an influence on market competi-

tiveness, reliance on data-driven modelling can be expected to increase if the model prediction confi-

dence rates can be supported. It has been proven by Parkes et al. (2021) that regression neural network 

models for ship’s performance solution lose the prediction accuracy for regions of input parameters, 

where less training data were available and alternative methods has been developed & investigated to 

overcome this problem. The possibility of combining the semi-empirical knowledge of the ship’s pro-

pulsion power requirements investigated over centuries of naval engineering with the regression solving 

neural network approach is also investigated as one of the methods to increase the reliability of model 

predictions, where limited operational data could have been collected and limited knowledge of the 

physics laws governing system behaviour in complex environment can be found or is resource demand-

ing to be simulated Leifsson et al. (2008). This approach further referred as grey box modelling is in-

vestigated for the accuracy of power prediction in voyages conducted in loading state parameters not 

covered by the training data. Two approaches for grey box modelling are investigated and compared 

with power prediction of the high-resolution data recorded by the data collecting system installed 

onboard merchant vessel. Research aims to explore the potential of accuracy increase for power predic-

tion models that can be used for voyage optimization and performance monitoring tasks with high focus 

on increasing and assessing the confidence level for the model predictions in the states that were not 

covered by the training data. 

 

2. Input Data Quality Assessment & Dynamic states identification 

 

Before approaching performance model training task, the input data quality needs to be monitored and 

investigated for sensor failures or unreliable readings. It is vitally important to identify sensor failures 

or unreliable reading and exclude them from training datasets in order to avoid false input-output rela-

tionships being utilized in training algorithms. Moreover, when utilizing high-resolution data, the train-

ing dataset is expected to also cover dynamic transition states recorded by the sensors e.g. changes of 

the Main Engine RPM setpoints, where vessel’s acceleration and whole system reaction needs to be 

taken into account in order to avoid this training data being used for modeling input-output relation-

ships. This type of data cleaning requires preparation of algorithms allowing RPM setpoint changes 

detection. This can be found particularly challenging as the variance of recorded high-resolution RPM 

data also tends to increase in bad-weather conditions or when operating in unsteady conditions, where 

additional environmental parameters are contributing to added resistance. In order to mitigate those 

challenges, the two-state RPM setpoint changes filters have been developed allowing to detect RPM 

setpoint changes in both steady and unsteady operating conditions. 

 

 
Fig.1: Torque meter sensor diagnostic results, faulty sensor(left), correct sensor reading(right) 

 

2.1. Unsteady operating conditions filter 

 

The threshold determining the unsteady conditions has been evaluated basing on environmental factors 

partially based on ITTC (2014) procedures & recommendations describing environmental conditions 



 

42 

limitations for conducting sea trials. Additional parameter referring to the current speed vector perpen-

dicular to the ship movement direction has been introduced as proposed replacement to the difference 

between speed through water and speed over ground. Thanks to this parameter more data has been 

classified as steady conditions, where despite increased difference between speed measured from speed 

log sensor and GPS receiver, low RPM variances has been observed.  

 

The unsteady operating conditions filter has been based on following parameters :  

• 𝐻𝑤 ≤ 1.5 ∙  √
𝐿𝑝𝑝

100
  

• {
𝑉𝑤 < 28 𝑘𝑡𝑠 𝑓𝑜𝑟 𝐿𝑝𝑝 > 100𝑚

𝑉𝑤 < 22 𝑘𝑡𝑠 𝑓𝑜𝑟 𝐿𝑝𝑝 ≤ 100𝑚
 

• 𝑉𝑦,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 ≤ 0.5 𝑘𝑡𝑠  

• ℎ > (3 ∙ √𝐵 ∙ 𝑇 , 2.75 ∙  
V𝑆𝑇𝑊

2

𝑔
 ) 𝑚𝑎𝑥 

 

𝐻𝑤 − Significant Wave height [m] 

𝐿𝑝𝑝 − Length between perpendiculars [m] 

𝑉𝑤 − Wind speed Relative [kn] 

𝐵 − Ship’s Breadth [m] 

𝑇 − Draught at midship [m] 

𝑉𝑦,𝑐𝑢𝑟𝑟𝑒𝑛𝑡 − Current speed vector perpendicular to the ship movement direction [kn] 

ℎ − Water Depth [m] 

V𝑆𝑇𝑊 − Speed Through Water [kn] 

𝑔 - acceleration due to Earth’s gravity (9.81 m/s2)  

 

It is worth noting that the train dataset with identified steady and unsteady conditions is not subjected 

to rejection of the unsteady conditions data at this phase. The classification results will be utilized fur-

ther for benefits of the dynamic state filter application. The presence of recorded unsteady conditions 

is important for further modeling of the adverse weather conditions effect on shaft power requirements. 

 

 
Fig.2: Indication of unsteady conditions (yellow) with visible increase of RPM variance & speed re-

duction 

 

2.2. Dynamic States filter 

 

The dynamic states filter aims to categorize dataset for speed transition time periods recognition. The 

change of RPM setpoint is detected basing on speed of RPM change with different threshold depending 

on previously identified steady or unsteady state. It has been observed that for unsteady states much 

higher variances of the recorded RPM have been observed and leaded to false detection of the RPM 

setpoint change. Nevertheless, changes of RPM setpoints in adverse weather conditions are still de-

tected within different levels of threshold for speed of RPM change. 

 

As the Main Engine control system is able to change the operating conditions in relative short time, the 

overall system reaction for new propeller RPM setpoint takes more time to achieve steady condition. 
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The additional delay filter for steady condition has been proposed to overcome this phenomena. The 

reaction time can be assessed by observations of other parameters like STW and shaft torque altering 

to steady level after the RPM setpoint change. Example of the high-frequency data capturing such ef-

fects of RPM setpoint changes can be found in Fig.3. 

 

 
Fig.3: Detected RPM setpoint changes (red), dynamic effect on torque and STW variation (yellow) 

 

In result of dynamics states data filtration & cleaning the transient states can be identified and rejected 

from training dataset, the effect of reduced scattering can be observed on examples of power/speed 

plots, Fig.4. It is noticeable that less dense operating points reflecting temporary operating states were 

identified and rejected from training dataset in order to avoid their contribution in modelling process. 

 

 
Fig.4: Effect of dynamic state filter. Data after filtering (left), data before filtering (right) 

 

3. Grey Box Modelling Approach 

 

The Regression error metrics utilized during neural network-based models can induce heavy influence 

of available test data set on accurate representation of the ground truth representing true input-output 

relationships as presented by Parkes et al. (2025). To overcome this problem, it has been proposed to 

introduce limited knowledge of the physical models used in naval architecture to predict power require-

ments and to represent the influence of external environmental conditions on the added resistance. The 

process of embedding physical laws into the model learning process is realized in two different manners. 

Their difference lies in the interaction between the part driven by known physical laws, the input fea-

tures and the target variables of the neural network model. 

 

3.1. White Box Model 

 

The isolated part representing known physical dependencies further referred as white box is subjected 

to first step of model preparation including adjustment of variables representing following physical 

parameters during model training process:  
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• 𝐿𝑝𝑝 - length between perpendiculars [m]  

• 𝐵 - Beam [m]  

• 𝐸1 - Angle of entrance of the waterline [deg]  

• 𝐸2 - Angle of run of the waterline [deg]  

• 𝐶𝑏 - block coefficient [-]  

• 𝐾𝑦𝑦 - non-dimensional radius of gyration of pitch [% LPP]  

• 𝐻 - Ship's Height[m]  

• 𝐶𝑑 - Wind Resistance Coefficient [-]  

• 𝐷 - Propeller Diameter [m]  

• 𝐽(𝜂𝑚𝑎𝑥) - Advance Ratio for Propeller Max. Efficiency [-]  

• 𝜂𝑚𝑎𝑥 Propeller Max. Efficiency [%] 

 

Although those physical parameters can be retrieved from ship’s particulars data, at this stage the white 

box model tuning has been proposed. The process allows adjusting the physical parameters during 

learning stage within scope of certain high and low limiting values derived from typical characteristics 

of merchant vessels parameters. It’s also assumed that part of this initial values is unknown or there’s 

limited knowledge of their current state, such as for maximum propeller efficiency. If some of these 

parameters are specified by the model user, their limits can be regulated or they can be treated as non-

trainable parameters of the white box model. The process of white box model training involves utiliza-

tion of physics-based models describing vessel’s added resistance due to wind, wave and shallow water. 

The remaining part of hull’s resistance is represented by the Frictional Resistance relationships based 

on estimated hull’s wetted surface. Functions representing laws governing added resistance has been 

based on following references: 

 

• Calm Water resistance: Papachristou et al. (2024) 

𝑅𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 =
1

2
⋅ 𝐶𝑉 ⋅ 𝜌𝑤 ⋅ 𝑆𝑤𝑒𝑡𝑡𝑒𝑑 ⋅ 𝑣𝑆𝑇𝑊

2  

where : 

𝐶𝑣 - viscous resistance coefficient, 𝜌𝑤 - water density (1025.0 kg/m2), 𝑣𝑆𝑇𝑊- speed through 

water, 𝑆𝑤𝑒𝑡𝑡𝑒𝑑- wetted hull surface. 

Wetted hull surface has been approximated using Denny-Mumford's formula. 

𝑆𝑤𝑒𝑡𝑡𝑒𝑑   = 𝐿𝑝𝑝 ⋅ (1.7 ⋅ 𝑇 + 𝐵 ⋅ 𝐶𝐵)  

𝑇 - ship’s draft 

• Wind Resistance: Det Norske Veritas (2014) 

𝑅𝑤𝑖𝑛𝑑 =
1

2
⋅ 𝜌𝑎 ⋅ 𝐶𝑑 ⋅ 𝑆 ⋅ sin(𝛼) ⋅ 𝑉𝑤

2 

where : 

𝑅𝑤 - added resistance due to wind, 𝜌𝑎 - air density (1.206 kg/m2),  

𝑆 - projected area of the member normal to the direction of the force, 

𝛼 - angle between the direction of the wind and the axis of the exposed member or surface, 

𝑉𝑤 - wind speed relative to the ship 

Projected area 𝑆 has been approximated using formula: 

𝑆  =  (𝐻 − 𝑇) ⋅ 𝐵 

• Wave Resistance: Wang et al. (2021) 

𝑅𝑤𝑎𝑣𝑒 = 𝑅𝐴𝑊𝑀 + 𝑅𝐴𝑊𝑅 

where : 

𝑅𝐴𝑊𝑀 - motion induced component of resistance, 𝑅𝐴𝑊𝑅 - wave reflection component of 

resistance. 

𝑅𝐴𝑊𝑀 = 3859.2𝑝𝑤𝑔𝜁𝐴
2 𝐵2

𝐿𝑝𝑝
𝐶𝑏

1.34𝐾𝑦𝑦𝑎1𝑎2𝑎3𝜔𝑏1𝑒
𝑏1
𝑑1

(1−𝜔𝑑1)
 

𝑔 - acceleration due to Earth’s gravity (9.81 m/s2), 𝜁𝐴 - wave amplitude 𝑎1,𝑎2,𝑎3𝑏1,𝑑1 and 

𝜔 - parameters dependent on ships length, beam, block coefficient, speed, draft, wave 

height, wave direction and wave period. 
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𝑅𝐴𝑊𝑅   =   ∑ 𝑅𝐴𝑊𝑅 𝑖

4

𝑖=1

 

𝑅𝐴𝑊𝑅 𝑖- added wave reflection resistance components dependent on waterline geometry, 

speed, hull geometry, wave parameters. 

• Shallow Water Resistance: ITTC (2021), basing on Raven’s (2019) method: 

𝐶𝑉

𝐶𝑉𝑑𝑒𝑒𝑝
= 1 + 0.57 ⋅ (

𝑇

ℎ
)

1.79

 

Added shallow water resistance can be described as: 

𝑅𝑠ℎ𝑎𝑙𝑙𝑜𝑤 𝑤𝑎𝑡𝑒𝑟 = (
𝐶𝑉

𝐶𝑉𝑑𝑒𝑒𝑝
− 1) ⋅ 𝑅𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 = 0.57 ⋅ (

𝑇

ℎ
)

1.79

⋅ 𝑅𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 

where : 

𝐶𝑉 - viscous resistance coefficient, 𝐶𝑉𝑑𝑒𝑒𝑝 - viscous resistance coefficient in unrestricted 

waters, ℎ - water depth (m) 

 

Wave making resistance has been excluded from the scope of white box modelling due to its high 

complexity and lower contribution to hull resistance at Froude numbers, where most operational data 

can be collected, as mentioned by Bertram and Marioth (2024). The total predicted shaft power within 

the white box model is given by the formula:  

 

𝑃𝑠ℎ𝑎𝑓𝑡 (𝑤ℎ𝑖𝑡𝑒 𝑏𝑜𝑥) = (𝑅𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 + 𝑅𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛) ∗ 𝑉𝑆𝑇𝑊/𝜂𝑝𝑟𝑜𝑝𝑢𝑙𝑠𝑖𝑜𝑛  

𝑅𝑒𝑛𝑣𝑖𝑟𝑜𝑛𝑚𝑒𝑛𝑡 = 𝑅𝑤𝑖𝑛𝑑 + 𝑅𝑤𝑎𝑣𝑒 + 𝑅𝑠ℎ𝑎𝑙𝑙𝑜𝑤 𝑤𝑎𝑡𝑒𝑟 

 

The process of data flow within white box model training can be described by the following algorithm: 

 
Fig.5: Whitebox model training parameter and data flow diagram 

 

Although the learned white box variables might differentiate from the true vessel’s parameters their role 

allows to tune the relationships within known laws governing power requirements allowing to increase 

white box model accuracy at the first step.  

 

3.2. Serial Grey Box Model 

 

The physics-based model is coupled with a neural network model in two different scenarios. The serial 

grey box approach is based on a white box model that provides an initial estimate of the shaft power, 

which is then used as an additional input feature for the neural network model part, referred to as the 

black box model. 
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𝑃𝑠ℎ𝑎𝑓𝑡 (𝐺𝑟𝑒𝑦𝑏𝑜𝑥 𝑠𝑒𝑟𝑖𝑎𝑙) = 𝑃(𝑏𝑙𝑎𝑐𝑘 𝑏𝑜𝑥)(𝐵𝐵 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, 𝑃𝑠ℎ𝑎𝑓𝑡 (𝑤ℎ𝑖𝑡𝑒 𝑏𝑜𝑥)) 

 

 
Fig.6: Serial Grey Box Model Diagram 

 

Within scope of this approach the physics-based shaft power estimation provides additional information 

to the neural network contributing to the more accurate input-output relationships modeling. It is as-

sumed that for regions where very limited amount of training data were available those input-output 

relationships will provide better estimation accuracy than the pure black box modeling approach. 

 

3.3. Parallel Grey Box Model 

 

The second grey box modelling approach is known as parallel grey box. This approach assumes that 

the black box part is responsible for modelling the difference between the initial estimated shaft power 

prediction provided by the white box part and the recorded true shaft power values. With the same level 

of input features available for the black box it is assumed to provide ability of capturing more precise 

relationships between input variables representing environmental conditions being able to correct the 

inability of white box model to precisely represent the input-output relationships.  

 

𝑃𝑠ℎ𝑎𝑓𝑡 (𝐺𝑟𝑒𝑦𝑏𝑜𝑥 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙) = 𝑃𝑠ℎ𝑎𝑓𝑡 (𝑤ℎ𝑖𝑡𝑒 𝑏𝑜𝑥) + ∆𝑃(𝑏𝑙𝑎𝑐𝑘 𝑏𝑜𝑥)(𝐵𝐵 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) 

 

 
Fig.7: Parallel Grey Box Model Diagram 

 

Similar to the serial grey box, the parallel grey box is assumed to have the ability to increase the pre-

diction accuracy for the regions where little train data was available over pure black box prediction 

accuracy in that region. 

 

  



 

47 

3.4. Grey box method validation with artificial dataset 

 

In order to represent the problem and test the alternative learning algorithm with an indication of the 

potential advantage of the physics influenced grey box models over pure black box, an artificial dataset 

has been generated involving white box model-known law given by simple artificial speed and shaft 

power dependence:  

 

𝑃𝑆ℎ𝑎𝑓𝑡 =  𝑆𝑇𝑊2 

 

To the one-dimensional dependency, the additional artificial influence of wind speed on added shaft 

power has been included with following dependency rule: 

 

𝑃𝑎𝑑𝑑𝑒𝑑 =  𝐶𝐷 ⋅ 𝑉𝑤
2 ⋅ 𝑆 

 

where :  

𝐶𝐷 – Wind Resistance Coefficient  

𝑉𝑤  – Wind Speed 

𝑆 – Projected area of the member normal to the direction of the force 

 

The artificial training dataset has been generated with two dense regions of data availability in order to 

resemble the problem of non-uniform distribution of training data. Two datasets were generated with 

normal distribution patterns for resemblance of the data collected at lower and higher speeds. The 

amount of data has been distributed by 75 % of the dataset recorded in higher speeds and 25 % of data 

recorded at lower speeds. The power- speed curves were generated for three models representing power 

prediction for zero wind speeds with mean absolute percentage errors for each power-speed curve. 

 

 
Fig.8: Artificial dataset and power-speed curves from different model predictions 

 

The artificial dataset has presented high advantage of the grey box modelling approaches over the pure 

black box model. It is noticeable, that the data availability significantly influenced the black box model 

causing it to strongly deviate from the ground truth relations in the region, where no training data was 

available. The superiority of parallel grey box over serial grey box can also be observed, but it is not 

assumed as conclusive at this level due to the simplified method of artificial dataset generation. 

 

  



 

48 

4. Confidence Level assessment for Performance Models 

 

The assessment of the reliability of neural network predictions is highly important when predictions 

will be employed in critical decision-making processes supported by machine learning models. In clas-

sification problems the neural network models confidence estimation has been the subject of extensive 

research, with a range of methods having been proposed. However, research on the application of such 

measures in regression model applications remains limited as mentioned by Shin and Koo (2021). To 

address this problem, an alternative way of confidence level assessment in shaft power prediction has 

been proposed. Basing on knowledge of the basic rules governing environmental conditions and pro-

pulsion power requirement gained though industry’s research on the aspects of vessel’s hydrodynamics 

and seakeeping, the key parameters allowing to establish the environmental domain limits were se-

lected. It is acknowledged that the resistance of the hull can undergo substantial alteration within the 

domain of the vessel's draft and trim. These parameters are identified as the parameters of operational 

optimisation, with the objective of minimising the resistance of the hull. These parameters were selected 

as the domain definition, in conjunction with STW, which is recognised as the third most significant 

model feature. Remaining environmental-dependent parameters are assumed to be subjects of further 

data filtering methods even if their influence on added resistance can be higher than change of draft, 

trim or STW. The model user shall have the possibility of power requirement estimation regardless of 

the vessel’s loading conditions, with given confidence rates.  

 

The estimation of model’s prediction confidence level is based on the availability of the training data 

within domain of operational parameters of the estimation. The measure describes amount of test data 

points within training data domain in scope of the selected parameters. In order to pre-define the do-

mains of training data, the clustering methods has been utilized. The methods were previously assessed 

as useful for vessel’s operational datasets classification by Górski et al. (2021). The train datasets are 

subjected to clustering within the scope of three dimensions of operational parameters. The test datasets 

are then assessed for their affiliation within the clusters of training data. In instances where test datasets 

may be allocated to multiple clusters, the affiliation rate is calculated for all potential clusters. Conse-

quently, the highest rate is taken into account. The clustering domains are represented in form of convex 

hulls. To store the information about classified train datasets, the apexes of convex hulls of identified 

clusters can be saved for further predictions. To check if new data point is inside the hull, it is check if 

adding it to the cluster (reduced to apexes of hull) will change a convex hull volume. If the volume of 

convex hull has been extended, the point was identified as external to the assigned convex hull. Other-

wise, the point is inside the convex hull and is regarded as affiliated with the given cluster. 

 

 
Fig.9: Training dataset Clusters with Test Periods data points max affiliation rates. Cluster with one 

voyage period artificially excluded from the training dataset resulting in zero affiliation rate for 

Period no. 3 (right)  
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5. Comparison of Prediction Accuracy 

 

The model accuracy assessment has been prepared basing on data set collected by SeaPerformer system 

installed onboard ocean going 1700 TEU container vessel. The selection of container vessel has been 

dictated by the higher challenge of shaft power prediction posed by significant changes of cargo to wind 

exposed structure and their influence on added wind resistance, irregular loading conditions causing 

higher variance of draft & trim in consecutive voyages and more frequent changes of RPM setpoints 

dictated by the operational characteristics with requirements of reaching precise ETA’s at the container 

terminals. Two train dataset cases were proposed for selected test period in order to validate the change 

of accuracy basing on training dataset availability. The training dataset has been investigated upon sim-

ilar operational draft & trim conditions and the close matching voyages has been excluded from the 

train dataset in order to form second train dataset with no data recorded in close conditions. For the test 

period next voyage has been selected in order to minimise other time dependent factors like hull fouling 

on prediction accuracy assessment. The affiliation rates for both train datasets were assessed as 0% and 

98.07%. The resulting convex hulls are presented in Fig.9. Selected test period has been represented by 

yellow points. Despite close presence of the similar draft & trim conditions in voyages conducted in the 

past, their operating conditions were found to be different and this can be particularly seen on the 3-

dimensional graphs. This type of high variance of the loading conditions can be found frequent for 

container vessels. 

 

 
Fig.10: Timeline graph of the train & test (blue) data with excluded similar voyage (red) 

 

Training dataset consists of 1 minute resolution data from 62 days of vessel’s operation. Subject to 

dynamic state filtering, where identified dynamic states were rejected from training, resulting dataset 

consisted of 93.34% of initial data. Two train datasets with high and zero affiliation were used for model 

training and validation against test dataset. This approach aimed for representing two scenarios with 

high and zero test data availability in similar operation conditions. It is noticeable that two grey box 

models were able to predict shaft power with lower error rates, than black box models for both test 

cases. It is also seen that there’s significant accuracy improvement for the test case where no train data 

were available when using grey box models over the black box model. There’s no big difference be-

tween two grey box modeling approaches for zero affiliation test case, however there’s a noticeable 

superiority of serial grey box prediction accuracy over parallel grey box for high affiliation test case. 
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Fig.11: Comparison of model’s prediction error rates for two test case datasets 

 

The experiment demonstrates the considerable potential of integrating physics-based knowledge into 

the machine learning process to enhance the accuracy of power prediction. Results based on real, high-

resolution operational data are partially confirming the superiority of grey box modeling achieved on 

artificial dataset experiment. To validate this finding, further research will be expanded to cover a more 

extensive range of test cases, involving different vessel types and operational datasets. 
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Abstract 

 
Today there is an incomplete understanding on how biofilms and soft fouling contribute to the 

generation of hydrodynamic drag.  The main roadblock is the absence of a basic understanding of the 

impact of such fouling to the turbulent boundary layer, and whether the utilization of the same 

parametrization strategies used in calcareous fouling would be effective.  In this paper we will address 

this question using topography-resolving direct numerical simulations informed by laboratory 

experiments. The complex fluid-structure interactions between biofilms and/or streamers and the 

turbulent boundary layer are directly resolved utilizing our in-house solver and leadership HPC 

resources. We will discuss the impact of soft fouling on near-wall turbulence, as well as strategies to 

modify existing correlations related to hydrodynamics drag. 

 

1. Introduction 

 

Biofouling takes place in the parts of a naval vessel submerged in sea water and exposed to marine 

organisms which colonize these surfaces leading to excess fuel consumption because of the increased 

hydrodynamic resistance. The corresponding shaft power of a full-scale ship due to various fouling 

conditions can increase by up to 85%, compared to a hydraulically smooth hull, Schultz (2007). Today, 

roughness correlations encapsulating numerous datasets obtained over the years are typically utilized 

to predict the drag penalty over a rough wall. They assume an increased momentum deficit coming 

from the drag on the roughness elements, which has an impact on the standard law-of-the-wall 

represented by the roughness function, ∆U+, see for example Chung et al. (2021). The latter allows for 

the extrapolation of laboratory data to full-scale Reynolds numbers utilizing scaling laws for smooth-

wall boundary layers. The roughness function, however, depends on the details of the topography and 

the Reynolds number. Over the years multiple experimental and numerical studies for canonical, rough 

surfaces (i.e. uniform distributions of cylinders, hemispheres, pyramids etc.) provided estimates of the 

proper hydrodynamic roughness scale that shows the strongest correlation with the roughness function. 

Direct application of such correlations to biofouling roughness can lead to erroneous predictions, given 

that biofouling topographies exhibit specific surface properties that are not common in other types of 

roughness, Dehn et al. (2017). 

 

For calcareous biofouling involving barnacles and/or tubeworms there have been several studies 

investigating their hydrodynamic impact. Schultz (2005) conducted a study to investigate the frictional 

resistance of different antifouling coatings utilizing actual barnacle-fouled topographies and found that 

the silicon-based surfaces where the ones to result in the highest skin-friction values. Monty et al. (2016) 

reported experimental measurements in boundary layers over a rough wall populated by tubeworms and 

estimated the final drag penalty on a ship using scaling analysis. To reconstruct a realistic biofouling 

surface, they assembled the final roughness by using repeated tiles of scanned fouled coupons. To assess 

the drag impact of barnacle-type topographies, Kaminaris et al. (2023) used direct numerical simula-

tions (DNS) and concluded that the highest contribution to the total drag arose mainly from the pressure 

force imposed by the organisms (even up to 88%). Sarakinos and Busse (2019) performed DNS of 

turbulent channel flows over barnacle-type topographies with light clustering and observed that the 

frontal solidity has the highest impact on the roughness function for low planar solidity topographies. 

 

For soft fouling, however, we have an incomplete understanding as to how it contributes to the 

generation of hydrodynamic drag. In addition, fouling release (FR) and antifouling (AF) hull coatings 

that help control hard fouling, such as barnacles and tubeworms, are often ineffective at preventing soft 

fouling, see for example Molino and Wetherbee (2008). As a result, there is a need to develop a better 

understanding of the impact of such fouling to the turbulent boundary layer and whether the utilization 
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of the same parametrization strategies used for calcareous fouling would be effective to predict 

hydrodynamic resistance. Soft fouling, which is also referred to as slime, tends to be one of the first 

types of fouling to occur. They are typically composed of bacterial cells and diatoms, with the latter 

being the dominant species. Depending on the geographic location, type of surface and local 

hydrodynamics the structure of the biofilm varies significantly. Its thickness ranges from micrometers 

to millimeters, and when it grows under shear it is composed of thin flexible filaments called streamers. 

Today it is generally assumed that soft fouling results in minimal reduction in ship performance and 

therefore if found during a hull inspection is not considered a reason to clean the hull. Recent work, 

however, shows biofilms can induce a steep drag penalty. Murphy et al. (2018) studied biofilms 

consisting of very low stiffness streamers grown under shear in a channel flow configuration. They 

found that the mean velocity profile exhibits a standard log-law region with the expected downward 

shift found in rough-wall flows. The resulting equivalent sand-grain roughness height, ks, was of the 

order of 8.8 mm, and significantly larger than the physical height of the biofilm (1.7 mm). They 

speculated that this dramatic increase in drag was due to the flapping streamers and possibly the 

compliance of the biofilm layer. 

 

In this paper we will address these questions using topography-resolving DNS informed by laboratory 

experiments. The complex fluid-structure interactions between biofilms and/or streamers and the 

turbulent boundary layer are directly resolved utilizing our in-house solver and leadership HPC 

resources. We will discuss the impact of soft fouling on the near-wall turbulence, as well as strategies 

to modify existing correlations related to hydrodynamics drag. 

 

2. Methodologies 

 

We will consider the case of a fully developed turbulent channel flow, where one of the walls is covered 

by a flexible canopy consisting of an array of filaments randomly distributed to match the desired open 

area ratio. The coordinates x,y, and z represent the streamwise, wall normal and spanwise directions 

respectively. The incompressible fluid flow is governed by the Navier-Stokes equations: 

 

𝜕𝐮

𝜕𝑡
+ 𝐮 ⋅ ∇𝐮 = −∇𝑝 +

1

𝑅𝑒
∇2𝐮 + 𝐟 

(1) 
where u is the velocity vector, p is the pressure, f is a force that accounts for the fluid structure 

interaction, and Re=UbH/ν is the Reynolds number based on the kinematic viscosity of the fluid, the 

bulk velocity Ub and the channel half height H. The dynamic deformations of the filaments are governed 

by an inextensible Kirchhoff rod model, see for example Huang et al. (2007). 

 

 
Fig.1: Computational domain of turbulent channel with filaments at the bottom wall. The subset 

shows a schematic illustration of the Lagrangian markers at the core of the filaments used for 

the kinematics and the triangular mesh used in the fluid structure interaction. 
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The Kirchhoff rod model is well suited to model such structures, because it enables control of the 

undeformed shape and flexibility among other parameters to match the characteristics of the bio-

inspired canopies considered in the present study. The governing equation for a flexible inextensible 

filament is written in Lagrangian non-dimensional form as: 

 

∂2𝑋

∂𝑡2
=

∂

∂𝑠
(𝑇

∂𝑋

∂𝑠
) −

∂2

∂𝑠2
(γ

∂2(𝑋 − 𝑋𝑢)

∂𝑠2
) + 𝐹𝑟

𝑔

𝑔
− α ⋅ 𝐹𝑙 + 𝐹𝑟 (2) 

 

where s is the arclength, going from 0 at the bottom of the filament to Lf at the tip, X = 

(X(s,t),Y(s,t),Z(s,t)) the position, T the tension force along the filament axis, Fl the fluid force exerted 

on the filament, and Fr the repulsive forces between nearby filaments. In Eq.(2), α = ρ/ρs denotes the 

ratio of the density of fluid to that of the filament. The second term on the rhs of Eq. 2 represents the 

bending force and Xi denotes the undeformed state of the filament. The constant, γ=Γ/ρsU2L2 is a 

dimensionless parameter (Γ and ρs are the bending rigidity and density of the filaments respectively) 

that represents the ratio of the bending to inertial forces.  

 

 
Fig.2: Motion of a hanging filament at various time instants starting at t = 0 and separated by ∆t = 0.3. 

The motion is from left to right. a) γ = 0 (no bending force) and b) γ = 0.1. c) Time history of the 

free end of a hanging filament with γ = 0 and θ0 = 0.01π. Lines represent: • numerical solution, - 

analytical solution. 

 

The inextensibility condition is expressed by: 

 
∂𝑋

∂𝑠
⋅
∂𝑋

∂𝑠
= 0 (3) 

 
The tension force, T, in Eq.(2) is determined by the constraint of inextensibility by solving the Poisson 

equation: 

 

∂𝑋

∂𝑠
⋅
∂2

∂𝑠2
(𝑇

𝑋

∂𝑠
) =

1

2

∂2

∂𝑡2
(
∂𝑋

∂𝑠
⋅
∂𝑋

∂𝑠
) −

∂2𝑋

∂𝑡 ∂𝑠
⋅
∂2𝑋

∂𝑡 ∂𝑠
−
∂𝑋

∂𝑠
⋅
∂

∂𝑠
(γ

∂2(𝑋 − 𝑋𝑢)

∂𝑠2
− 𝐹 + 𝐹𝑟) (4) 

 
At the free end (s = L) the boundary conditions for the filaments are T = 0, ∂2X/∂s2 = (0,0,0) and ∂3X/∂s3 

= (0,0,0). At the bottom wall the filaments are clamped, and the boundary conditions are ∂T/∂s = 0, X 

= Xwall and ∂X/∂s = (0,1,0). A staggered grid is used in the Lagrangian coordinate system, with the 

tension defined on the faces and the other variables defined on the nodes. All spatial derivatives are 

approximated using second order central finite differences. For the time advancement of the kinematics 

all terms except the bending and repulsive forces are treated implicitly. 

 

To validate the Kirchhoff rod model, we performed simulations of a hanging filament without ambient 

fluid under a gravitational force. The filament is initially held stationary at an angle θ0 from the vertical 
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and released at t = 0. The initial position of the filament is given by X(s,t = 0) = L · cos(θ0) and Y(s,t = 

0) = L · sin(θ0), where x is the direction of the gravity. At the hanging end a simply supported boundary 

condition is used, namely ∂T/∂s = 0, X = Xwall and ∂X2/∂s2 = (0,0,0). The motion of the filament with (γ 

= 0.1) and without (γ = 0) bending force at various time steps is shown in Fig.2. The motion is from left 

to right. In the simulations L = 1, Fr = 10 and θ0 = 0.1π. In the absence of a bending force the filament 

is very flexible, and the free end rolls up towards the right at the end of the rightwards motion. When γ 

= 0.1 the filament maintains its predeformed shape throughout the motion and the roll-up is inhibited. 

The motion in this case resembles more that of a pendulum.  An analytical solution for the motion of 

the filament exists when the swing amplitude is small and the bending force is neglected, Huang et al. 

(2007). Fig.2c compares the analytical solution with the simulation (γ = 0, θ0 = 0.01π), where the free 

end position of the filament is plotted. The agreement is excellent. 

 

In the classical immersed boundary technique, the filament would be represented by a triangular surface 

mesh and there would be at least 10 or more Eulerian grid points across the diameter to resolve the flow. 

An immersed boundary force is mathematically defined such as to satisfy the correct velocity at the 

surface of the filament. However, since the filaments are very thin, the computational cost of this 

approach would be prohibitively expensive. In the present simulations the filaments are represented by 

a set of markers along the filament core line and the Eulerian grid resolution is approximately equal to 

the virtual filament diameter. The interaction force between the fluid and the filament is then calculated 

as: 
𝐹(𝑋) = 𝑐 ⋅ (𝑈(𝑋) − ℐ[𝑢(𝑋)]) ⋅ 𝑑𝑉𝐿𝑎𝑔 (5) 

 

where U(X) is the velocity of the filament at the Lagrangian marker location X and ℐ[𝑢(𝑋)] is the fluid 

velocity at the Lagrangian marker location interpolated from the Eulerian grid points surrounding the 

marker. dVLag is the volume associated with each Lagrangian marker. The coefficient c was properly 

adjusted to give the same total drag force as a fully resolved simulation around a filament with a virtual 

shell of an equivalent diameter. The force is then spread back to the Eulerian grid points surrounding 

the marker (f in Eq.(1)) using the same weights as in the interpolator operator. 
 

𝑓(𝑥) = 𝒮[𝐹(𝑋)] (6) 

 

Note that the linear force in Eq.(2) is simply the force per unit filament length, namely Fl = F/∆s, where 

∆s is the Lagrangian grid spacing. 

 

A collision model was used to account for short-range interactions between filaments and between a 

filament and a wall, Schmid et al. (2000). Due to large number of filaments markers calculating the 

distance between each filament marker would be prohibitively expensive. We therefore used a different 

approach. In particular, at each timestep each marker was mapped to the Eulerian grid. Then if a Eulerian 

grid contained one or more markers and had a neighboring Eulerian cell which also contained one or 

more markers a repulsive force was applied to all those markers as follows: 

 

𝐹𝑟 = 𝑐𝑟1 ⋅ 𝑒xp [−𝑐𝑟2 ⋅
|δ𝑋𝑙,𝑚| − 2𝑟

𝑑𝑟
] ⋅

δ𝑋𝑖𝑗

|δ𝑋𝑖𝑗|
, |δXl,m| ≤ dr (7) 

 
where δXl,m is the distance vector from marker m to marker l or the wall, and dr is the threshold 

separation distance set to 2 Eulerian grid cells. Typically, both coefficients cr1 and cr2 are sensitive to 

the flow conditions and are determined empirically, Schmid et al. (2000). For filaments that are very 

flexible, such as the ones considered in this study, we found that the coefficient cr1 can be automatically 

set to the sum of the magnitude of the fluid forces acting on each marker: 

 

𝒄𝒓𝟏 = |𝑭𝒇|𝒊
+ |𝑭𝒇|𝒋

(𝟖) 

 

while c2 = 1.0. This method automatically ensures that the repulsive force is always larger than the local 

fluid force pushing a filament towards another, but not excessively large to cause instabilities. 
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The equations governing the fluid flow are advanced in time using a semi-implicit projection method, 

where all terms treated explicitly are advanced using a 3rd order Runge-Kutta scheme, and all terms 

treated implicitly are advanced using a 2nd order Crank-Nicholson scheme. All spatial derivatives are 

discretized using second-order central differences on a staggered grid. A weak coupling schemes was 

utilized to couple the two sets of equations. The code is parallelized using a domain decomposition 

approach in the streamwise direction. 

 

3. Problem setup 

 

A turbulent channel flow case is considered where the filaments are located on the bottom wall. Fig.1 

shows the setup of the simulation along with the filaments in a deformed state. The computational 

domain extends 1.5H × 1H × 0.5H in the streamwise, wall normal and spanwise directions respectively, 

where H denotes the half-channel height. The pressure gradient was adjusted to maintain a constant 

bulk velocity Ub. The grid utilizes 400 × 200 × 282 points in x, y and z respectively. No-slip boundary 

conditions were imposed on the bottom and top walls while periodic boundary conditions were used in 

the streamwise and spanwise directions. When a portion of a filament crossed over one end of the 

domain in either x or z direction it was copied in a periodical fashion at the other end. 

 

A total of six simulations were carried out with different canopy coverage ratios and Reynolds numbers. 

Table 1 lists the cases along with relevant parameters. The Reynolds number based on the half channel 

height and the bulk velocity varied from Reb = 20000 − 80000. The filaments have a length l = 0.125H 

and a virtual diameter d = 0.0015625H resulting in a slender ratio l/d = 80. The Cauchy number defined 

as Ca = ρdh2U3/2γ and representing the ratio of fluid forces to bending force is 100000, which means 

that the filaments are very flexible. The ratio of filament to fluid density α = ρf /ρ = 1.2 approaching the 

neutrally buoyant state. The solidity parameter defined as λ = nf ld/(LxLz), where nf is the number of 

filaments, l and d are the filament length and virtual diameter, and Lx and Lz is the extend of the domain, 

varied from 1.3 and 2.6, corresponding to 20% and 40% coverage respectively. A total of 5000 and 

10000 filaments were used in the λ = 1.3 and λ = 2.6 cases respectively with each filament represented 

by 100 markers. 

 

4. Discussion 

 

First, we analyze the effect of the flexible canopy on the mean velocity profiles. Fig.3 shows the profile 

of the streamwise velocity averaged over time and homogeneous directions for the different Reynolds 

numbers and solidity parameters. The ensemble average position of the filaments, calculated by 

averaging all the filament position relative to their root, is also shown for reference while the inflection 

points and the canopy tip are indicated by open circles and dashed lines respectively. In general, as the 

solidity parameter decreases the canopy deflects more and the velocity profiles exhibit a smaller 

momentum deficit closer to the wall. Also, in agreement to what has been observed in the literature the 

velocity profiles exhibit two distinct inflection points, one very close to the wall and a second one closer 

to the canopy tip. The inner inflection point is reminiscent of that attained in an anisotropic porous 

medium, Rosti et al. (2018), while the outer one is typically associated with the drag discontinuity near 

the canopy tip and the formation of turbulent mixing layers, Raupach and Thom (1981). The outer 

inflection point typically matches the location of the canopy tip, Foggi Rota et al. (2024), He et al. 

(2022), although in several studies the latter is not directly computed form the data. In our simulations 

we found that the outer inflection point is always below the canopy tip. However, as the solidity 

parameter increases the inflection points moves closer to the canopy tip. The difference in this behavior 

is most likely attributed to the different canopy properties, which in our case tends to be considerably 

more flexible and with larger length to thickness ratio for the individual filaments. 

 

The structure of the mean velocity profiles above points to the presence of two distinct layers inside 

and outside the canopy, that may or may not follow classical turbulent boundary layer scaling laws. 

Prior work in this area, Foggi Rota et al. (2024), suggests the use of different velocity scales in each 

regime. 
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Fig.3: Profiles of the streamwise velocity averaged over time and space shown for solidity parameter 

of a) λ=1.3 b) λ=2.6. The ensemble average filament position is also shown for reference. The 

subset shows the velocity profile plotted over the full channel height. The inflection points are 

shown with open circles and the canopy tip is indicated with dashed lines. Lines represent: —

; Reb = 80000, —; Reb = 40000, —; Reb = 20000. 

 

Table I: Summary of cases 

Case Re λ α Ca k/H k+ ks+ ks/H ∆U+ ks/k 

A 20000 1.3 1.2 1e5 0.024 33.3 158.3 0.10 9.1 4.75 

B 40000 1.3 1.2 1e5 0.024 68.9 357.0 0.10 11.0 5.18 

C 80000 1.3 1.2 1e5 0.024 130.4 566.8 0.10 12.2 4.34 

D 20000 2.6 1.2 1e5 0.035 51.7 319.4 0.20 10.8 6.18 

E 40000 2.6 1.2 1e5 0.035 99.2 581.0 0.20 12.2 5.85 

F 80000 2.6 1.2 1e5 0.035 192.5 1073.0 0.20 13.7 5.58 
 

The friction velocity at the wall, uτ,in = (τw/ρf)1/2
 is typically used for the, slow, viscous layer inside the 

canopy boundaries, while for the flow outside the canopy the friction velocity uτ,yvo at the location of a 

virtual origin, yvo, is computed. The latter is the distance from the wall that best matches the following 

logarithmic law:  
𝑈

𝑢τ,𝑦𝑣𝑜
=
1

κ
𝑙𝑜𝑔 (

(𝑦 − 𝑦𝑣𝑜) ⋅ 𝑢τ,𝑦𝑣𝑜
ν

) + 𝐵 − Δ𝑈+ (9) 

 

where k = 0.41 is the von Karman constant, B = 5.2 and ∆U+ is the roughness function representing the 

downward shift in the log-law profile. Eq.(9) is a nonlinear, implicit function that can be used to 

determine the value of yvo, which is typically assumed to be located between the first and the second 

inflection points. We found that multiple choices of yvo yielded a log-law fit in some region outside of 

the canopy. Fig.4 shows contours of the velocity shift, ∆U+, in Eq. 9 in the yvo vs y coordinate space for 

the case with λ = 2.6 and Reb = 80000. The range of the virtual origin extends from the bottom wall all 

the way up to the canopy tip and the outer flow starts above the canopy tip. The isolines are generally 

curved but there exist areas where they ∆U+ remains constant indicating the potential presence of a 

shifted log-law. While there are horizontal isolines at the low-end of yvo, the range is very short. We 

therefore determined the choice of the virtual origin by maximizing the range over which the velocity 

profiles exhibit a log-law fit. 
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Fig.4: Profiles of the streamwise velocity averaged over time and space shown for solidity parameter 

of a) λ=1.3 b) λ=2.6. The ensemble average filament position is also shown for reference. The 

subset shows the velocity profile plotted over the full channel height. The inflection points are 

shown with open circles and the canopy tip is indicated with dashed lines. Lines represent: —; 

Reb = 80000, —; Reb = 40000, —; Reb = 20000 

 

Fig.5 shows the velocity profiles scaled by uin
τ on the left and by uτ,yvo on the right. Only below y+ < 1 

do the velocity profiles collapse from all the different simulations collapse and exhibit the typical linear 

scaling U/uτ,in = yuτ,in/ν. This agrees with previous work by Foggi Rota et al. (2024) where only the first 

few very close to the wall observe the same trend. When scaled with uτ,yvo all velocity profiles have a 

shifted log law. The starting point and the range of the log law region vary among the simulations, but 

it appears to be centered around y+ ∼ 100. The corresponding ∆U+ or each case is listed in Table I. Note 

that the exact value of ∆U+ depends on the choice of κ, B and the yvo in Eq.(9), but the change in ∆U+ 

was less than 5%. 

 

 
Fig.5: Profiles of the streamwise velocity averaged over time and space and scaled by a) uτ,in and b) 

uτ,yvo . Lines represent: — analytical log law for smooth turbulent channel, —; Reb = 80000 and λ 
= 2.6, —; Reb = 40000 and λ = 2.6, —; Reb = 20000 and λ = 2.6, - -; Reb = 80000 and λ = 1.3, - -; 

Reb = 40000 and λ = 1.3, - -; Reb = 20000 and λ = 1.3 

 

The roughness function depends on a physical measure of the surface roughness as well as the Reynolds 

number, see e.g. Schultz (2007). In the case of flexible canopies the average canopy height, k is a 

reasonable choice. Table I lists the k values for all different cases. In Fig.6a, the roughness function 

∆U+ is plotted as a function of the average canopy height k+ = kuτ,yvo /ν for all cases. For comparison, the 

uniform sandgrain roughness results by Nikuradse (1950) have been added. 

 

The results follow the slop of the sandgrain roughness data in the fully rough regime although the 

roughness function is significantly larger. A common roughness scale, typically utilized in the literature 

for fixed roughness topologies, is the equivalent sandgrain roughness height, ks, which is the height that 

produces the same roughness function as the uniform sandgrain roughness by Nikuradse (1950) in the 

fully rough regime. The value of ks
+ can be determined using the log-law intercept for a uniform 

sandgrain surface in relative roughness form, Flack et al. (2007): 

𝐵 − Δ𝑈+ +
1

κ
𝑙𝑛𝑘𝑠

+ = 8.5 (10) 

y   
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Fig.6: Roughness function results for the flexible canopies simulations. Experiments for a variety of 

roughness surfaces is also plotted for comparison. a) Dimensionless roughness height k+ based on 

average canopy height and b) equivalent sand grain roughness height k+
s . Lines and symbols 

represent: ■; flexible filaments λ = 2.6 ■; flexible filaments λ = 1.3, —; uniform sand exp. 

Nikuradse (1950), ▷ sandpaper roughness exp. Flack et al. (2007). 

 

First, k+
s is computed using Eq.(10) for each solidity parameter only at the highest Reynolds number to 

ensure that it’s in the fully rough regime. The value of ks is then obtained from: ks = ks
+ν/uτ,yvo. For the 

lower Reynolds numbers ks
+ was calculated assuming that the equivalent roughness height ks is universal 

for a specific coverage. This definition has been shown to collapse the function roughness results in the 

fully rough regime from different roughness shapes as shown in Fig.6b. The equivalent roughness 

height for the flexible canopy simulation is shown with red and green symbols. It ranges from 200 to 

1000 placing it well within the fully rough regime. Agreement with other types of roughness is good 

suggesting that the equivalent roughness height can also be applied to flexible canopies. The ratio of 

the equivalent roughness height to the canopy height, ks/k, is listed in Table I. The ratio ranges from 

4.75 to 6.18 which is large. 

 

The dynamics of the near-wall turbulent flow differ from what is observed over smooth walls. For the 

case of rigid canopies for example, the formation of coherent spanwise rollers has been reported, Nepf 

(2012). These structures are the product of a Kelvin–Helmholtz (KH) instability caused by the disconti-

nuity of the drag at the canopy tip. The KH instability triggers the formation of large spanwise-coherent 

rollers that develop at the canopy tip, and evolve into large, elongated structures in the streamwise 

direction. Today, in most cases these structures are identified either statistically by analyzing the spatial 

co-spectra of the velocity fluctuations, or by visualizing the velocity fluctuations, see for example Monti 

et al. (2020), Jimenez et al. (2001).  

 

 
Fig.7: Flow visualization using the Q-criterion of the vortical structures in the flow. The flexible 

filaments are also shown at the bottom wall and they are colored by their vertical coordinate. 

 

Fig.7 shows an instantaneous snapshot of the flow from the simulation at Reb = 80,0000 and λ = 2.6. 

Here, we visualize the turbulent structures by plotting an iso-surface of the second invariant of the 

 

roller 

roller 

roller 
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velocity gradient tensor, or Q criterion. The flexible canopy is also shown for reference and colored by 

the vertical coordinate (darker green at the bottom and lighter green away from the wall). A lot of 

vortical structures are visible throughout the flow. Three spanwise rollers are clearly indicated by 

arrows in the figure. These rollers form at the local canopy tip. Their extend in the spanwise direction 

appears to be comparable to the filament length. 

 

 
Fig.8: Flow visualization using the Q-criterion showing the evolution in time (at four different instances 

starting from left to right) of a spanwise roller formed at the canopy tip. 

  

Other spanwise vortices are also visible above the canopy tip as well as a plethora of streamwise 

oriented vortical structures. An evolution of a spanwise roller is clearly traced in Figure 8. The roller is 

initially coherent in the spanwise direction. Due to the high shear different parts of the roller are 

advected at different speeds and the rollers starts to bend along the span until it resembles a horseshoe 

like vortex. The vortex quickly breaks down into smaller vortices. 
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Abstract 

 

Wind measurement on board of ships is typically performed by cup anemometers. For higher 

accuracy, the application of lidar systems is proposed. The first application has already been made 

for performance measurement on board of ships with wind assisted propulsion systems (WAPS). In 

the future, there will be an increasing number of WAPS installations and thus a strong demand for 

performance verification. This verification will be based both on short-term sea trials and on 

mid-term performance monitoring during in-service operation. The application of lidar systems will 

be essential for obtaining reliable results from such measuring campaigns. With long-term experience 

in the application of lidar systems in the offshore wind industry, DNV is ready to assess and verify 

and to plan and perform such measuring campaigns. 

 

1. Introduction 

 

A new revision of the ISO guideline 15016 on speed/power trials was published at the beginning of 

February 2025. To improve the reliability of the results, the various corrections due to environmental 

conditions were reassessed. Wind correction can be improved by imposing stricter limits on the 

maximum acceptable wind speed or by improved sensors. Ultimately, a combination of these 

measures was agreed upon: with better sensors, higher wind speeds are acceptable. This means that 

the fixed installed cup anemometer can still be used for the speed/power trials, but ultrasonic sensors 

or lidar systems are recommended by the guideline and offer operational advantages. 

 

2. Uncertainty from wind speed measurement 

 
For performance measurements, the measured wind speed is applied for correction of the measured 

shaft power regarding the additional wind resistance. This is part of the corrections due to 

environmental conditions which include in addition to the true wind the wind waves, swell, current 

and water temperature and density. The size of the different corrections depends on the actual 

environmental and ship conditions. For example, for very large container ships during newbuilding 

sea trials, the wind resistance is usually the dominant correction due to the high deckhouse. 

 

Currently, wind measurement on-board of ships is performed with cup anemometers. A fixed installed 

sensor is usually mounted on top of the light mast on the deckhouse. Simply changing the 

anemometer type will not be sufficient to improve the accuracy. The measuring location is of 

importance, the applied wind profile over the height and the wind coefficients to calculate the force 

from the measured wind speed affect the results as well. It should be kept in mind that the force is 

proportional to the square of the wind speed and therefore sensitive to the measured values. 

 

The application of lidar systems offers several advantages with a remote measurement of undisturbed 

wind at different levels. Nevertheless, for newbuilding sea trials following the ISO standard, the best 

accuracy will be achieved for trials in low wind conditions. The same applies to performance 

monitoring during a ship's operation: the best accuracy can be achieved by filtering the data and 

removing measured data for higher wind speeds. 

 

Therefore, lidar application will remain an exception for these ISO newbuilding sea trials. In addition 

to the improved accuracy of the sea trial results themselves, another point should be considered. The 

application of a lidar during sea trials offers the option to calibrate the fixed installed cup 

anemometer, thereby improving accuracy during in-service performance monitoring. Eventually, the 

available data need to be extended by numerical calculations to cover a sufficient range of different 
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wind speed and direction. This option of anemometer re-calibration during sea trials is only relevant 

for ships that do not distinctly change their shape depending on the loading condition. For example, 

container ships experience significantly different disturbances in the airflow at the anemometer 

position when there are no containers in front of the deckhouse. 
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Fig.1: Factors influencing the accuracy of the wind correction for speed trials 

 

Although performing measurements during calm wind conditions is the preferred approach, this is not 

always possible or even desired. The increasing popularity of WAPS installations raises the demand 

for performance measurements at true wind speeds of 15 knots and more. And in this case the 

accuracy is twice as important because the wind force is not only used to correct the measured 

propulsion power is also the relevant input for the thrust of the WAPS.  

 

The ITTC sea trials procedure for assessing the power savings from wind assisted propulsion highly 

recommends the application of lidar systems. DNV believes that such short-term verification of 

WAPS performance requires lidar wind measurement. A short-term measurement provides only 

limited insight into the actual savings during operation; therefore, a monitoring system should provide 

further data during operation. If the application of lidar is not possible for monitoring during 

operation, calibrating the fixed installed wind sensor by the lidar measurements during sea trials, 

combined with numerical calculations, can potentially improve the accuracy and applicability of the 

in-service measured data. 

 

3. Lidar systems 

 

Lidar (Light detection and ranging) is becoming a buzzword, representing very accurate wind speed 

measurement. However, not every system is suitable for on-board application, and some systems 

already provide useful features for the installation on board. To allow for comparison of different 

available lidar systems, the working principle of these measuring devices is explained below in 

condensed form, along with an overview of their application in the wind energy industry. 
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Lidar systems for wind speed measurements usually apply infrared lasers, namely in the near infrared 

spectrum between 780 nm and 3000 nm (corresponds to 3.85 to 1·1014 Hz). The range above 1350 nm 

is not visible to the human eye, but the near infrared range can be detected by electronic image 

converters. 

 

The laser beam is emitted into the atmosphere, where it is scattered by particles in the air. A portion of 

the photons is backscattered and received by the detector, a spectroscope that allows for frequency 

analysis. The frequency shift between emitted and backscattered signal is due to the Doppler shift, 

enabling the determination of the speed of the scattering aerosols along the beam direction (often 

called LOS, the line of sight) from the frequency shift. 
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Fig.2: Lidar set-up and detected signal 

 

To identify the velocity of the wind, at least three one-dimensional measurements in different 

directions are needed. In practice, this can be achieved using a single laser with different inclination 

angles. Two different methods are usually applied: swinging or rotating the laser. 

5°

5°
pulsed laser

continuous laser
15°

 
Fig.3: Doppler beam swinging and velocity azimuth display wind field reconstruction 

 

The Doppler beam swinging (DBS) technique uses a pulsed laser. The beam is directed in 4 different 

directions, typically ±15° in horizontal direction and ±5° vertically relative to the centre. A plane is 

spanned by the four beams, and assuming that the wind velocity is equal within this area, the three 

components of the wind velocity can be determined. The distance of the plane from the laser is 

defined by the runtime of the backscattered signal, allowing for the investigating of different planes 

with the same beam by distinguishing between different runtimes. 

f0 = 1.82·1014 Hz frequency

intensity
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laser signal

backscattered 
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frequency shift
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However, a continuous laser is applied for the velocity azimuth display (VAD) method. With an 

arrangement of prisms and mirrors, the laser beam rotates around the centre line at a constant angle, 

creating a conical trajectory. Different measurement heights are scanned consecutively by changing 

the focus of the laser beam. 

 

The orientation of the laser can either be horizontal or vertical. In the wind industry, vertically 

arranged lidar systems are widely applied. On one hand, these lidar systems are used for wind 

resource assessment, meaning the pre-construction evaluation of a location's potential. On the other 

hand, the vertical orientation allows for the identification of wind profiles along the height with 

measurements at different levels. Lidar systems for the vertical orientation are usually ground based. 

 

 

Fig.4a: Vaisala WindCube  

(ground based 4-beam pulsed DBS lidar) 
Fig.4b: ZXTM 

(ground based continuous-wave VAD lidar) 
 

An alternative arrangement is nacelle mounted lidar systems. These devices are horizontally aligned 

and are mounted on the top of the nacelle of a wind turbine. The lidar is oriented ahead to measure the 

inflow of the turbine at multiple distances. The extremely short-term shadowing of the fast-passing 

blades can be neglected. These lidar arrangements are used for power performance tests (PPT) during 

the commissioning and operation of wind turbines. The lidar signal can even be used as input for the 

wind turbine’s control system. Measuring at different distances from the wind turbines allows for the 

determination of the induction zone, the distance within which the wind field is already affected by 

the wind turbine. A typical value for the minimum distance for an undisturbed wind field is 2.5 times 

the diameter of the wind turbine’s rotor. 

 

  
Fig.5a: Vaisala WindCube Nacelle 

(4-beam pulsed DBS type nacelle lidar) 

Fig.5b: ZXTM 

(continuous-wave VAD type nacelle lidar) 

 

4. Measuring campaign preparation 

 

Calibration of the lidar is needed to ensure the lidar unit´s functionality and to quantify the 

measurement uncertainty. The standard reference instrument for calibrating lidars is the cup 

anemometer. This type of anemometer provides high accuracy as a calibration reference since the cup 
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anemometers are calibrated in a wind tunnel under controlled conditions before installation in the 

field on a test mast. A re-calibration of the cup anemometers in the wind tunnel is carried out every 

two years. 

 

The calibration process of nacelle lidars follows IEC 61400-50-3. It combines a laboratory and a field 

test. In the laboratory, the scan geometry of the nacelle lidar is verified. The angle between the 

original and the actual laser beam orientation is measured with an integrated inclinometer. The 

accuracy of this measurement is verified by geometric verification of the angle in the laboratory. 

Several tilt and roll angles are investigated for this verification. 

 

The field test involves comparing the wind speed measured by the lidar with the values from the cup 

anemometer. The cup anemometers are installed on two test masts and measure in horizontal 

direction. The lidars are mounted on a lattice mast at a height of 25 or 30 metres and are oriented so 

that two laser beams are in the horizontal plane, with each beam pointed close to a reference cup 

anemometer. 
 

Test mast A: Reference masts with cup anemometers for nacelle lidar calibration with 

height of 30 m 

Test mast B: Reference mast for calibration of ground based lidars with height of 100m  

Lattice mast C: Lattice mast for mounting of nacelle lidars with height of 30 m 

Fig.6: DNV lidar test site for calibration in Northern Germany 

 

The IEC standard requires a set of data in the range from 4 to 12 m/s with 0.5 m/s intervals. For each 

interval, a minimum of five valid 10 minutes averages must be sampled to complete the calibration. 

The duration of a campaign depends on the wind conditions at the test site and usually takes between 

6 weeks and 6 months. A new calibration is carried out prior to each measuring campaign or every 

2 years. The performance of the lidar calibration is a DAkkS accredited service offered by DNV. 

Cup anemometer 

Test mast A 
Test mast A 

Lattice mast C 

Test mast B 

C A B A 



 

67 

5. Challenges for measuring campaigns on board of ships 

 

The first difference compared to onshore measurements is the restricted space on board. This makes it 

very difficult to install cup anemometers with sufficient distance from any structure for undisturbed 

wind flow at the measuring location. Additionally, long pivot arms are subject to engine or propeller 

induced vibration on board, which restricts the options for a suitable arrangement. 

 

The IEC standard provides detailed mounting guidelines for measurement instruments. For example, a 

cup anemometer on a lattice mast with a cross section of 0.6 m should be mounted in a distance of 

2.55 m. However, even at this distance, there is still a significant range of wind directions that is 

disturbed by the mast. 

 
Fig.7: Required lever arm length for a side mounted anemometer according to IEC standard 

 
The consequence from the restricted space is the recommendation for a remote measurement of the 

undisturbed wind field, meaning the application of lidar for accurate and reliable wind speed 

measurement. 

 

Another difference compared to onshore measurements is the movement of the ship. The speed along 

the course can easily be corrected (speed over ground is relevant in this regard and not speed through 

water) but rolling and pitching of the ship needs additional measurements of the inclination. Data 

from the inclinometer of the lidar can be applied for this correction. 

 

It is notable that lidar systems are even installed on buoys. In this case vertical arrangement of the 

laser beam is applied for offshore wind resource assessment. Correction of the buoy movement is 

essential for this application. 

 

 
Fig.8: Floating lidar 

 

Another challenge is the data transfer. In case of in-service monitoring application of lidar, it is 

possible to continuously send the 10 minutes wind speed average values to shore only and to 

download the detailed high frequency data later in port. 

 

6. Measuring campaign outline 

 

Although for shipping there are no obligatory guidelines in place for power performance tests to 

assess WAPS, it makes sense to borrow guidance from the on- and offshore wind industry. Lidar is a 

standard tool in this branch. 
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Nacelle lidar systems are particularly suitable for on-board application. Planning trials for the 

verification of WAPS performance, it must be distinguished between short-term sea trials and 

in-service performance tests. The attended sea trials allow for immediate assessment of relevance and 

accuracy of the measured values and for first estimation of actual WAPS performance. Unattended 

in-service tests offer more flexibility regarding the variable wind conditions. A combination of 

short-term trials and mid-term monitoring promises the most robust results. 

 

 
Fig.9: On-board lidar measuring campaign procedure 

 

During performance trials, a detailed recording of the environmental and ship conditions is required. 

This includes wave and swell height and direction measurements, water temperature and density, air 

temperature and pressure and drafts, trim and heel of the ship. The new revision of the ISO 15016 

proposes the application of a wave buoy when the ship is stopped before and after the test runs. 

 

DNV provides a Vaisala WindCube Nacelle lidar for the wind velocity measurement. This is a 

four-beam pulsed DBS system. The lower beam pair is aligned in horizontal direction for the even 

keel condition of the ship. This arrangement allows for the measurement of wind speed and direction 

at 12 different distances between 40 and 700 m, enabling for all ship sizes wind speed measurement in 

front of the bow in an undisturbed wind field. In this configuration, the upper beam pair is inclined 

by 10° and allows for identification of the wind profile. 

 

Regarding the wind speed, the relevant ship speed is the speed over ground as measured by DGPS. 

For the performance assessment and the power savings by WAPS, the ship speed refers to the speed 

through water. The difference between both speed values is the current. For sea trial measurements 

following ISO 15016, the identification of the current can be realized by a series of double runs with 

reciprocal heading. For sea trials with WAPS, a variation of the heading is required to investigate 

different relative wind speed and angles. Therefore, a combination of current identification from 

double runs and comparison with speed log data is proposed for WAPS performance trials. 

During in-service operation, performing double runs is not practical, and an assessment of the current 

must be based on the DGPS speed and the speed measured by the speed log. For WAPS that can be 

deactivated in short time (rotor sails or suction sails), the WAPS performance can be assessed by 

comparing subsequent intervals with active and passive sail. If the time between the two measuring 

intervals is short, the variable current might be negligible. 
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Fig.10: Measuring set-up for WAPS performance verification sea trials 

 

7. Conclusion 

 

The application of lidar on board of ships with wind assisted propulsion is required for best accuracy 

in WAPS performance verification. DNV has combined experience and capacity from the shipping 

and wind industry to support our customers in this verification task, starting from calibration of lidars 

to the performance and evaluation of on-board measurement campaigns. 

 

DNV’s common approach is to apply a nacelle lidar for on-board measurements which allows for 

precise measurement of horizontal wind speed and direction around and ahead of the ship, 

independent of relative wind direction. Additionally, the wind profile is measured at the same time. 

 

Up to now, there are no binding guidelines in force for the WAPS performance verification. From 

regulatory perspective, the focus on actual reduced fuel consumption is sufficient. The fuel saving is a 

direct consequence from the WAPS application but is determined by averaging over some time and 

different conditions. For a direct assignment of wind conditions to the resulting thrust from the 

WAPS, a more detailed investigation is required. Procedures for these investigations, such as 

calibration requirements, can be based on existing guidelines in the wind industry. 
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Abstract 

 

A high-frequency data collection system is able to monitor continuously and accurately the performance 

of the vessel where it is installed. The Weather Station of the vessel is the source of real but relative 

measurements for weather condition. Weather data may also be acquired from external weather 

providers using the vessel coordinates to position the vessel on the weather model grid and calculate 

the corresponding weather forecast parameter values. In this paper a comparative study of vessel’s 

sensor measurements vs data from an external weather provider is presented. Furthermore, the effect 

of the differences between the different data sources and their impact on performance analysis (ie KPI 

calculated values) is examined and quantified. 

 

1. Introduction 

 

The performance of a ship underway is significantly influenced by its operating environment, including 

wind, sea currents, and waves. Accurate and timely environmental data are crucial for calculating and 

analysing important key performance indicators (KPIs) such as power deviation, engine load margin 

etc, enabling effective vessel monitoring and performance assessment. Weather data can be collected 

through crew visual observations , ship sensors (like an anemometer) for measuring wind, or weather 

providers that extract the parameters from the global weather grid using the ship position coordinates 

and related time as input. The later, when they correspond to a present time forecasting, are referred as 

nowcast data. In principle, these methods are not comparable due the following facts: 

 

• Weather is changing per time and location, and the crew observe the weather on a given time 

and position, which may not be efficient for calculations,  
• Sensors are measuring continuously but all measurements are related to their proper positioning 

and to ship’s speed and heading. 
• Weather forecasts used may have uncertainty especially when weather is changing.   

 

This study compares wind measurement data obtained from the shipboard sensor with wind nowcast 

data provided by a weather provider. The research aims to assess the accuracy of wind nowcast data 

and explore the impact of such data on ship performance KPIs. A real case study will be presented to 

demonstrate how weather resolution can influence the calculation of a specific KPI. 

 

To facilitate this analysis, the study leverages the LAROS™ High Frequency Data Collection System 

by Prisma Electronics, which enables high-frequency data acquisition from various systems, instru-

ments and sensors, like the shipboard anemometer. In addition, LAROS advanced APIs allow 

automated synchronization with weather provider data in parallel with the vessels’ anemometer. The 

powerful analytical and visualization capabilities of LAROS™ Data Analysis Software (DAS) are 

utilized for in-depth data exploration.  

 

2. Anemometer vs Nowcast Data 

 

Accurate measurement of wind speed and direction on a moving ship presents unique challenges. 

Shipborne anemometers, while crucial for various applications, are subject to two primary sources of 

error: The accuracy of the sensor itself and the distortion of the wind flow around the ship body. 
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Reliable Data from the anemometer itself is a complicated task. Modern sensors typically have accuracy 

smaller than 2% at wind speeds of approximately 10 m/s. However, this accuracy must be maintained 

through regular calibration and proper maintenance to ensure reliable measurement when the weather 

is normal. 

 

Ship's superstructure significantly distorts the airflow around the vessel. This distortion, particularly 

pronounced around the bridge where anemometers are commonly mounted, leads to inaccurate wind 

speed readings. Studies like those conducted by Moat et al. (2005), utilizing Computational Fluid Dy-

namics (CFD) simulations and generic ship models (tankers, bulkers), have shown significant discrep-

ancies between free-stream wind speeds and the actual wind speeds experienced by the anemometer 

due to the ship's structure.  

 

These studies provide valuable insights into the magnitude and nature of this airflow distortion and 

some of the results are appeared at Fig.1 and Fig.2. As the anemometers measure the wind flow at the 

point they are positioned above the bridge, their measurements correspond to the modified air stream, 

which introduces this bias. The distortion of wind speed measurements directly affects the accuracy of 

true wind calculations. 

 

 
Fig.1: The normalized wind speed along the centerline of the generic ship for a bow-on flow 

(from left to right). The contours indicate the normalized wind speed (i.e., the measured 

wind speed as a fraction of the free-stream wind speed). The arrows indicate regions of 

recirculation Moat et al. (2005) 

 

 
Fig.2: Vertical profiles of normalized wind speed at a distance of x/H   0.3 from the upwind leading 

edge (located at x   0   z). The heights have been normalized by the step height, H. For 

beam-on flows, H is the bridge-to-waterline height and for bow-on flows, H is the bridge- 

to-deck height. A negative normalized wind speed indicates flow reversal. The vertical 

dashed line indicates the region where the wind speed is equal to the free-stream wind speed 

Moat et al. (2005). 
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Weather providers typically deliver nowcast data for marine environments, which encompass a range 

of environmental parameters beyond just wind speed and direction. These parameters often include: 

 

• Wind: Speed and direction 

• Sea Currents: Speed and direction 

• Waves: Height, period, and direction 

• Swell: Height, period, and direction 

• Air Pressure: Atmospheric pressure 

• Seawater Depth: Bathymetry information 

• Temperature: Air and seawater temperature 

• Salinity: Seawater salinity 

 

To provide relevant data for a specific vessel, weather providers utilize the vessel's coordinates (latitude 

and longitude) at specific  timestamp to pinpoint its position within the weather model grid. Weather 

models generate data on a grid, with each grid point representing a specific location and time. To de-

termine the weather parameters at the vessel's exact location, sophisticated interpolation techniques are 

applied. These techniques utilize the data from surrounding grid points to estimate the values at the 

vessel's position. Some indicative factors that affect the accuracy of the data are: 

 

• The accuracy of the data that feed the model (ie effect of the distance of the closest meteoro-

logical station or Buoy from the ship’s location or the validity of the Voluntary Observing Ship 

reports). 

• The accuracy of the model itself. 

• The interpolation or extrapolation techniques for distance and time. 

 

Haranen et al. (2017) demonstrated a strong correlation between wind speed and direction data obtained 

from nowcast providers and those data measured by onboard ship sensors (anemometers). This corre-

lation seems to provide a valuable tool for data quality assessment but not all the times. Significant 

deviations from the expected correlation can indicate potential issues with the ship's anemometer, such 

as calibration errors, sensor malfunctions, or interference from the ship's superstructure or, weather 

model’s inaccuracy at vessel’s location. When onboard sensor data is deemed reliable (i.e., exhibiting 

a strong correlation with crew observations and nowcast data), it should be prioritized for performance 

analysis due to their higher accuracy and the fact that are real. In cases where onboard sensor data are 

unreliable or unavailable then, nowcast data can provide a suitable alternative for performance analysis, 

offering relatively accurate wind information for the vessel's location. 

 

3. Data Selection and Acquisition 

 

3.1. Onboard Data Selection 

 

For this study, the following data were collected from the vessel: 

 

• Speed Over Ground (SOG): The vessel's speed relative to the ground. 

• Speed Through Water (STW): The vessel's speed relative to the water. 

• Relative Wind Speed and Direction: Measured by the onboard anemometer. 

• Heading: The vessel's heading at each data point. 

• Static Drafts (Fore & Aft): Used to determine the anemometer height above sea level. 

• Propeller Shaft revolutions (RPM). 

• Propeller Shaft Power. 

• Main Engine Fuel Oil Consumption. 

 

True wind speed and direction were calculated using the formulas outlined in ISO 19030-2 Annex E, 

which account for the vessel's speed and heading. The recorded drafts were utilized to calculate the 



73 

anemometer's height above sea level. This information was then used to apply the velocity profile for-

mula specified in ISO 19030-2 Annex E to adjust the measured wind speed to a standard height of 10 

meters above sea level. The analysis encompasses a four-month period, spanning from July 1, 2024, to 

November 1, 2024. 

 

3.2. Data Acquisition 

 

All data were collected using the LAROS™ system, an advanced Holistic High-Frequency Data 

Acquisition System developed by Prisma Electronics. LAROS™ provides an independent and 

transparent  approach to signal processing and data gathering, enabling the connection of wireless/wired 

smart collectors to various sensors, SCADA systems, instruments and equipment across the vessel, in 

order to have structured, synchronized and on sensor’s edge related data. The system collects and 

processes signals for their quality on the spot (implementing edge computing) from multiple 

points/sensors; then it creates the related datasets in a synchronized manner. All collected data are 

finally transmitted to a central server for storage and further processing. Collected data are transmitted 

to the vessel's headquarters in real-time for further analysis and data driven decision support. Fig.3 

shows the LAROSTM© system’s architecture. 

 

 

 
Fig.3: Graphical representation of LAROSTM© system 
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The system can collect data with a high temporal resolution like per 15 seconds or minute, potentially 

as frequently as every three seconds or sensors’ ability. The accuracy of the collected data is dependent 

on the accuracy of each individual sensor or equipment that provides the specific measurement but in 

principal, this is becoming a matter of smaller importance when data from those sensors are used as 

related time series. 

 

LAROS™ system was integrated with a weather provider to receive nowcast data. The specific provider 

delivers meteorological and oceanographic data for specific vessel positions, including near-past 

analysis and forecasts up to 168 hours ahead. For atmospheric parameters, the provider utilizes the 

NCEP Global Forecast System with a 0.50° resolution. The model is updated every six hours (00:00 

UTC, 06:00 UTC, 12:00 UTC, 18:00 UTC). Wind speed at 10 meters (WPWS) and wind direction 

(WPWD) were retrieved from the nowcast data at an hourly basis using the vessel's coordinates and 

timestamp as input. The retrieved nowcast data were synchronized with the ship sensor recordings 

within the LAROS™ system. 

 

3.3. Vessels Selections 

 

Table I summarizes the key characteristics of the twelve bulker vessels included in the analysis. To 

enhance the reliability of the onboard sensor measurements, the selection process prioritized newer 

vessels. Furthermore, the analysis focuses on three distinct vessel types, with comparisons drawn among 

sister vessels within each type. The ratio of the anemometer height above the bridge to the height of the 

accommodation structure is included. This parameter is used for elaborating further on the potential 

impact of the airflow distortion on the anemometer readings. Same cell color represents sister vessel.  

 

Table I: Selected vessels summary data 

A/A Type DWT Built (year) z/H 

1 Ultramax 63500 2021 0.86 

2 Ultramax 63500 2022 0.86 

3 Ultramax 61200 2022 0.78 

4 Ultramax 61200 2022 0.78 

5 Ultramax 61200 2023 0.78 

6 Ultramax 61200 2023 0.78 

7 Kamsarmax 82000 2023 0.57 

8 Kamsarmax 82000 2023 0.57 

9 Kamsarmax 82000 2022 0.57 

10 Kamsarmax 82000 2023 0.57 

11 Kamsarmax 82000 2024 0.57 

12 Kamsarmax 82000 2023 0.57 

 

4. Data Analysis 

 

Data analysis and KPI calculations were performed using the LAROS™ Data Analytics (DAS) 

software, a powerful application developed by Prisma Electronics. DAS offers a user-friendly interface 

for analyzing and visualizing large volumes of data. Its advanced capabilities extend beyond basic 

algebraic calculations, enabling the creation and calculation of new data parameters using Boolean 

conditions and time-based functions. The parameters that were calculated using the received data are: 

 

• True Wind Speed (TWS) and Direction (TWD): Calculated using the vessel's speed, head-

ing, and relative wind data. 

• Wind Speed Difference (ΔWS): The difference between the true wind speed measured by the 

ship's anemometer (TWS) and the wind speed provided by the weather provider (WPWS). 

• Wind Speed Ratio (WSR): The ratio of the true wind speed measured by the ship's anemom-

eter to the wind speed provided by the weather provider (TWS/WPWS). 
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• Root Mean Square Error (RMSE) of Wind Speed: Calculated as the square root of the mean 

squared difference between TWS and WPWS. 

• Power Deviation: The deviation between the actual measured shaft power and the theoretical 

shaft power predicted based on sea trial data for the same vessel speed, expressed as a percent-

age. 

• Engine Load Margin: The percentage of available engine load capacity to overcome addi-

tional resistance encountered during operation. 

• Fuel Consumption per Nautical Mile: The amount of fuel consumed by the main engine per 

nautical mile of advance, expressed in Kilograms per nautical mile (Kg/nm). 

• Propulsion Efficiency: The nautical miles travelled per kilowatt-hour of energy produced by 

the main engine (nm/kWh). 

 

4.1 True wind speed vs Wind Speed from Weather Provider 

 

The relationship between TWS derived from the anemometer measurements and WPWS was 

investigated at two resolutions of 1-minute and 1-hour. The 1 min resolution utilized all recorded and 

calculated data, capturing the high-frequency variations in anemometer measurements. The 1-hour 

resolution involved calculating hourly averages of both TWS and WPWS. Due to the hourly update 

frequency of the weather provider data, WPWS remained constant within each hour, while TWS 

exhibited continuous fluctuations based on anemometer measurements. This resulted in a less clear 

correlation between the two datasets at the 1-minute resolution, as depicted in Fig.4. By averaging data 

over one-hour intervals, the impact of high-frequency fluctuations in TWS was mitigated. This resulted 

in a more consistent and comparable dataset, leading to a stronger correlation between hourly averaged 

TWS and WPWS, which, although it is statistically correct, in represents a degradation of the true 

weather condition information in order to adapt to the low WP data resolution. 

 

  
Fig.4: TWS vs WPWS with 1min and 1 hr resolution 

 

Table II: Pearson’s correlation coefficient of anemometer true wind speed vs WP wind speed. 

A/A Vessels 
Corr. Coef. 1 min 

resolution 

Corr. Coef. 1 hr 

resolution 

1 Vessel 1 -0.41 0.60 

2 Vessel 2 0.27 0.82 

3 Vessel 3 0.08 0.92 

4 Vessel 4 0.23 0.80 

5 Vessel 5 0.18 0.91 

6 Vessel 6 0.06 0.80 

7 Vessel 7 0.20 0.82 

8 Vessel 8 0.02 0.85 

9 Vessel 9 0.31 0.83 

10 Vessel 10 0.03 0.71 

11 Vessel 11 0.06 0.78 

12 Vessel 12 0.13 0.77 
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Table II demonstrates this effect, indicating that the Pearson correlation coefficient, a measure of the 

linear relationship between two variables, was more meaningful when calculated using the hourly 

averaged data. The high-frequency fluctuations in TWS at the 1-minute resolution obscured the 

underlying correlation between the two wind speed measurements. On the other hand, the 1 hour 

resolution cannot represent the vessels true weather condition, as it changes within the 1-hour period, 

which may degrade the accuracy of the performance evaluation.  

 

  
Vessel 1 Vessel 2 

  
Vessel 3 Vessel 4 

  
Vessel 5 Vessel 6 

  
Vessel 7 Vessel 8 
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Vessel 9 Vessel 10 

  

Vessel 11 Vessel 12 

Fig.5: Weather Provider wind speed vs anemometer wind speed with 1 hr resolution 

 

Scatter plots were generated for each vessel, plotting TWS on the x-axis and WPWS on the y-axis, 

using 1-hour resolution data. Linear regression curves and a diagonal line (representing perfect 

agreement between TWS and WPWS) were overlaid on each plot for visual comparison. The plots 

revealed that at lower wind speeds, WPWS values tended to be larger than TWS values. The opposite 

is revealed at higher wind speeds.  Potential Contributing Factors may be:  

 

• Anemometer Accuracy: The accuracy of anemometers can vary depending on the wind speed, 

potentially leading to different relative errors at different wind speeds. 

• Ship Structure Interference: The impact of ship structure on airflow can also vary with wind 

speed, potentially influencing anemometer readings differently at different wind speeds. 

• Influence of Ship Speed: At lower wind speeds, the vessel's speed contributes more to the 

relative wind experienced by the anemometer. This can introduce variability in TWS measure-

ments, especially within the anemometer's accuracy range. 

• Errors on Weather Models: The accuracy of models used for weather forecasting on given 

locations can vary depending on the microclima there, distance from the weather station that is 

feeding the model and many other issues, potentially leading to larger relative errors when wind 

is getting stronger. 

 

The relationship between TWS and WPWS calculated as the ratio (WSR) of the two values  

(TWS/WPWS) was visualized for all vessels using bar graphs, for further analysis. The WSR values 

were binned into intervals of 0.1, ranging from 0 to 5. The 1 hour resolution data were used for this 

analysis. The bar graphs in Fig.6 present the duration of occurrence (i.e., number of observations) of 

WSR values within the specific intervals. The length of each bar represents the duration. Although most 

values are close to the average ones, the WSR ratio may spread from 0.1 to 5, indicating cases where 

true onboard measurements differ significantly from the weather provider wind speed values. 

 

Average WSR values were calculated for each vessel using both 1-minute and 1-hour resolution data. 

In order to focus on more representative wind conditions, the analysis was further refined by filtering 

the data to include only wind speeds within the 2-5 Beaufort range. Average WSR values were com-

pared between sister vessels to identify potential variations in wind speed measurements.  
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Vessel 9 Vessel 10 
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Vessel 11 Vessel 12 

Fig.6: WSR duration of appearance 

 

The calculated average WSR values were compared to the values predicted by the simulation model 

developed by Moat et al. (2005). For vessels 1 to 6, the simulated WSR value from Moat et al. (2005) 

was 1.08. For vessels 7 to 11, the simulated WSR value was 1.11. Table III presents the calculated 

average WSR values for each vessel, incorporating the different resolutions (1-minute, 1-hour), data 

filtering (2-5 Bft), and comparisons with sister vessels and the Moat et al. (2005) simulation results. 

 

Table III: Wind Speed Ratio deviation from simulation 

Vessels 
WSR 

simulation 

WSR 1 

min 

resolution 

WSR 1 hr 

resolution 

Deviation 

1 hr  res. 

(%) 

WSR 

1 hr res. 

2-5 

Beaufort 

Deviation 

1 hr res. 

2-5 

Beaufort 

(%) 

V 1 1.08 1.34 1.35 19.76 1.40 22.98 

V 2 1.08 1.50 1.50 28.18 1.56 30.69 

V 3 1.08 1.02 1.01 -6.42 1.07 -1.23 

V 4 1.08 1.01 1.01 -7.01 1.05 -2.88 

V 5 1.08 1.07 1.07 -0.94 1.13 4.27 

V 6 1.08 1.38 1.36 20.76 1.51 28.64 

V 7 1.11 1.45 1.45 23.47 1.54 27.79 

V 8 1.11 1.35 1.35 17.74 1.40 20.66 

V 9 1.11 1.16 1.16 4.30 1.17 5.01 

V 10 1.11 1.14 1.14 2.47 1.14 2.79 

V 11 1.11 1.14 1.14 2.59 1.19 6.64 

V 12 1.11 1.53 1.53 27.40 1.55 28.58 

 

The observation of the values at Table III may lead to the following conclusions: 

 

• The average WSR values (TWS/WPWS) were consistently greater than 1 for all vessels, indi-

cating that, on average, the true wind speed measured by the ship's anemometer was higher than 

the wind speed estimations provided by the weather provider. 

• Despite the inherent limitations of WPWS (not representing true free-stream wind), with a suf-

ficiently large volume of data, the WSR average should primarily depend on vessel-specific 

characteristics. This assumption allows for meaningful comparisons between the calculated 

WSR values and the simulation results derived by Moat et al. (2005).  

• Deviation of the calculated WSR from the simulation derived WSR is below 10% for half the 

vessels and this factor must be always in consideration.  

• For vessels 3 to 5, the deviation between the calculated WSR values and the simulation values 

was below 10%, suggesting good agreement between the measured and simulated wind speed 

relationships. The sister vessel 6 had over 20% deviation. Since a consistency for 3 of 4 sister 



80 

vessels was observed, the vessel 6 deviation may be due to a sensor problem or sailing on areas 

where weather models are not fine-tuned.  

• For the vessels 7 to 12, the agreement with the simulation results was less consistent, with half 

vessels exhibiting deviations below 10% and half showing deviations more than 20%. At this 

case, it may not be conclusive whether the simulation results work well. On the other hand it 

may be like a proof that nowcast data accuracy is not consistent, questioning their use for per-

formance or efficiency analysis. In comparison ship sensors, when calibrated and maintained, 

deliver data with transparency, which explains their behaviour.   

• For sister vessels 1 and 2 the deviation from the simulation is 20 to 30%. We observe a con-

sistent deviation, but the reason for it remains unclear. Further investigation is needed to deter-

mine the underlying cause. 

• Filtering the data to include only wind speeds within the 2-5 Beaufort range had a minor impact 

on the absolute WSR values but did not significantly alter the overall conclusions of the analy-

sis. 

 

Table IV presents the average difference between TWS and WPWS. Since the differences between 

TWS and WPWS can be both positive and negative, the simple average difference does not accurately 

reflect the magnitude of the discrepancies. To provide a more meaningful assessment, the average of 

the absolute differences and the Root Mean Square Error (RMSE) were also calculated.  

 

The analysis revealed a correlation between the magnitude of the difference ΔWS and the ratio WSR. 

Smaller differences generally corresponded to WSR values closer to 1. The absolute differences 

between TWS and WPWS and corresponding RMSE were typically in the range of 2-3 m/s. This 

magnitude of difference which is of the order of 1 Beaufort suggests that using TWS or WPWS for 

performance analysis may result in different conclusions, particularly for certain KPIs. 

 

Table IV: Wind Speed Ratio deviation from simulation 

Vessels 
ΔWS 

m/s 

ΔWS 

m/s 

(abs) 

RMSE 

m/s 

ΔWS 1 hr 

resolution 

m/s 

ΔWS 

(abs) 1 hr 

resolution 

m/s 

RMSE 1 

hr 

resolution 

m/s 

V 1 0.48 1.46 1.96 0.49 1.37 1.80 

V 2 0.87 1.46 1.88 0.87 1.34 1.71 

V 3 -0.24 1.44 1.97 -0.24 1.11 1.53 

V 4 -0.37 1.48 2.04 -0.37 1.26 1.70 

V 5 -0.59 1.48 1.94 -0.59 1.24 1.62 

V 6 0.19 1.65 2.28 0.17 1.42 1.96 

V 7 1.32 2.47 3.18 1.33 2.29 2.90 

V 8 1.10 2.11 2.78 1.08 1.92 2.48 

V 9 0.33 1.78 2.37 0.33 1.56 2.02 

V 10 0.10 2.00 2.82 0.10 1.79 2.48 

V 11 -0.08 1.71 2.32 -0.08 1.54 2.06 

V 12 1.71 2.72 3.47 1.72 2.53 3.21 

 

4.2 KPIs calculation and filtering 

 

Four KPIs were evaluated for the analysis period: 

 

• Power Deviation: The deviation between the actual measured shaft power and the theoretical 

shaft power predicted based on sea trial data for the same vessel speed, expressed as a percent-

age. 

• Engine Load Margin: The percentage of available engine load capacity to overcome additional 

resistance encountered during operation. 
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• Fuel Consumption per Nautical Mile: The amount of fuel consumed by the main engine per 

nautical mile of advance, expressed in Kilograms per nautical mile (Kg/nm). 

• Propulsion Efficiency: The nautical miles travelled per kilowatt-hour of energy produced by 

the main engine (nm/kWh). 

 

For each KPI, the average values were calculated using both 1-minute and 1-hour resolution data for 

all vessels. Further analysis aimed to assess the influence of data filtering (anemometer vs. weather 

provider wind speed) on the calculated KPI values. Data were filtered for wind speeds within the 0-4 

and 4-8 Bft range. The 4-8 Bft filtering was included because it represents a significant amount of the 

time, during which these wind conditions were encountered by the vessels, as presented at Table V. 

 

Table V: Time period of encountered weather 

Vessels 

0-4 Bft 

time 

(%) 

4-6 Bft 

time 

(%) 

6-8 Bft 

time 

(%) 

8-12 Bft 

time 

(%) 

4-8 Bft 

time 

(%) 

V 1 74.46 24.67 0.87 0.00 25.54 

V 2 66.03 30.65 3.32 0.01 33.97 

V 3 54.87 36.14 7.82 1.18 45.13 

V 4 66.93 29.48 3.55 0.04 33.07 

V 5 60.76 33.04 5.88 0.32 39.24 

V 6 65.27 30.67 3.94 0.11 34.73 

V 7 42.41 38.66 16.20 2.74 57.59 

V 8 44.82 38.46 14.88 1.83 55.18 

V 9 46.17 42.63 10.70 0.51 53.83 

V 10 46.54 43.31 9.76 0.38 53.46 

V 11 63.65 30.16 6.01 0.18 36.35 

V 12 42.71 37.61 17.80 1.87 57.29 

 

The KPIs were calculated using two wind speed sources for filtering: 

 

• Anemometer wind speed (TWS) 

• Weather provider wind speed (WPWS) 

 

The deviations of the KPI values obtained using anemometer wind speed (TWS) filtering, were 

compared to the corresponding values obtained using weather provider wind speed (WPWS) filtering. 

These deviations are presented in Tables VI to XII. Note that some vessels lacked certain sensors (e.g., 

flowmeters, torquemeter), resulting in missing data (void cells) for some KPIs in the tables. For one 

KPI (Fuel consumption per nautical mile) contour graphs have been created for three sister vessels, 

presenting this KPI versus TWS and WPWS. To investigate the influence of the wind speed only, the 

data were filtered for laden condition, head wind direction and 11-12 kn vessel speed.  

 

4.2.1 Power Deviation 

 

Table VI: Power Deviation 4-month average 0-4 Bft filtering 

Vessels 
1 min 

res 

Anem 

filtered 

1 min 

res 

WP 

filtered 

1 min 

res 

Dev.  

1 min 

res 

(%) 

1 hr res 

Anem 

filtered 

1 hr res 

WP 

filtered 

1 hr res 

Dev.  

1 hr res 

(%) 

V 1 50.59 49.71 51.48 -3.56 50.93 49.35 52.01 -5.39 

V 2 17.70 15.14 15.25 -0.72 18.48 15.33 15.71 -2.44 

V 3 58.10 48.57 50.68 -4.34 66.63 49.09 54.34 -10.70 

V 4 21.63 19.03 18.49 2.83 22.20 18.21 18.77 -3.05 

V 5 11.19 8.02 8.65 -7.82 11.58 6.41 8.44 -31.59 

V 6 26.74 20.27 19.83 2.18 27.68 19.47 20.60 -5.77 
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V 7 24.47 16.68 20.91 -25.34 26.89 15.20 21.59 -42.03 

V 8 22.20 13.24 16.49 -24.61 22.73 12.72 16.69 -31.18 

V 9         

V 10 17.27 9.70 14.20 -46.35 18.22 9.14 14.16 -54.94 

V 11 50.40 38.61 45.29 -17.29 52.13 35.81 44.51 -24.30 

V 12         

 

Table VII: Power Deviation 4-month average 4-8B filtering 

Vessels 
1 min 

res 

Anem 

filtered 

1 min 

res 

WP 

filtered 

1 min 

res 

Dev.  

1 min 

res 

(%) 

1 hr res 

Anem 

filtered 

1 hr res 

WP 

filtered 

1 hr res 

Dev.  

1 hr res 

(%) 

V 1 50.59 51.08 48.03 5.97 50.93 54.68 47.86 12.47 

V 2 17.70 21.83 22.45 -2.82 18.48 24.14 23.31 3.45 

V 3 58.10 65.03 60.42 7.09 66.63 79.95 71.43 10.66 

V 4 21.63 26.64 24.94 6.37 22.20 31.50 26.27 16.59 

V 5 11.19 14.72 14.24 3.26 11.58 17.22 14.88 13.60 

V 6 26.74 33.05 37.09 -12.21 27.68 38.25 38.06 0.48 

V 7 24.47 27.57 27.84 -0.97 26.89 32.23 31.47 2.35 

V 8 22.20 26.76 27.89 -4.22 22.73 29.61 28.68 3.16 

V 9         

V 10 17.27 22.26 21.71 2.48 18.22 26.49 23.48 11.36 

V 11 50.40 64.97 54.29 16.44 52.13 78.62 60.13 23.53 

V 12         

 

Based on Tables VI and VII, we observe the following: 

 

• KPI values are influenced by the choice of wind speed data source (anemometer vs. WP).  

• Using WP data generally results in higher KPI values compared to anemometer data when      

either 0-4 Bft or 4-8 Bft filtering is applied.  

• While some deviations are found significant, the actual differences in KPI values are typically 

below 5%. This may be considered as a deviation factor when WP is used for calculations.  
• Even small deviations can be important when KPIs are used for comparison and benchmarking. 

 

4.2.2 Engine Load Margin 

 

Table VII: Engine Load Margin 4-month average 0-4 Bft filtering 

Vessels 
1 min 

res 

Anem 

filtered 

1 min 

res 

WP 

filtered 

1 min 

res 

Dev.  

1 min 

res 

(%) 

1 hr res 

Anem 

filtered 

1 hr res 

WP 

filtered 

1 hr res 

Dev.  

1 hr res 

(%) 

V 1 2.56 1.45 2.61 -80.19 1.11 1.72 2.73 -59.21 

V 2 9.44 9.91 9.91 0.03 9.71 10.29 10.18 1.11 

V 3 6.20 8.50 8.53 -0.37 6.34 8.83 8.61 2.47 

V 4 -15.39 -15.17 -15.18 -0.10 -16.24 -15.47 -15.97 -3.25 

V 5 6.27 6.76 6.75 0.15 6.14 6.67 6.59 1.22 

V 6 10.67 11.60 11.56 0.42 10.17 10.74 10.56 1.70 

V 7 -0.87 1.93 1.72 10.87 -0.68 3.31 1.86 43.72 

V 8 -1.68 0.20 -0.25 225.36 -2.16 -0.24 -0.74 -204.55 

V 9         

V 10 2.36 5.12 4.08 20.30 2.32 5.68 4.26 25.01 

V 11 8.30 10.59 10.37 2.09 7.69 9.58 9.35 2.42 

V 12         
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Table VIII: Engine Load Margin 4-month average 4-8 Bft filtering 

Vessels 
1 min 

res 

Anem 

filtered 

1 min 

res 

WP 

filtered 

1 min 

res 

Dev.  

1 min 

res 

(%) 

1 hr res 

Anem 

filtered 

1 hr res 

WP 

filtered 

1 hr res 

Dev.  

1 hr res 

(%) 

V 1 2.56 -0.43 2.48 118.69 1.11 -0.96 2.31 340.79 

V 2 9.44 8.99 8.72 -15.51 9.71 8.65 7.79 10.01 

V 3 6.20 5.07 5.19 -1.28 6.34 4.42 5.01 -13.17 

V 4 -15.39 -16.71 -16.19 2.71 -16.24 -18.59 -17.18 7.61 

V 5 6.27 5.73 5.85 1.56 6.14 5.52 5.82 -5.36 

V 6 10.67 9.49 9.35 0.20 10.17 9.05 9.51 -5.12 

V 7 -0.87 -1.05 -1.83 49.31 -0.68 -1.04 -2.06 -98.42 

V 8 -1.68 -2.34 -2.75 26.46 -2.16 -3.24 -3.18 1.94 

V 9         

V 10 2.36 0.89 0.66 -89.57 2.32 0.35 0.47 -33.91 

V 11 8.30 6.75 7.18 1.67 7.69 5.04 6.86 -36.15 

V 12         

 

The analysis of the values at Tables VII and VIII shows the following: 

 

• A small impact on KPI values was observed when filtering for good weather conditions. A 

larger deviation in KPI values was observed at 1-hour resolution and for 4-8 Bft filtering. There-

fore, the choice of the wind speed source may affect the vessel performance comparison at 

higher sea states. 

• While some observed deviations in KPI values appear large, a closer examination reveals that 

these are often influenced by the small absolute values of the KPIs themselves. This can amplify 

the relative difference, even when the actual absolute differences in engine load margin is small. 

On the other hand small differences can be important when comparing sister vessels for perfor-

mance and efficiency. 
 

4.2.3 Fuel Consumption per Nautical Mile 

 

Table IX: Fuel Consumption per Nautical Mile 4-month average 0-4 Bft filtering 

Vessels 
1 min 

res 

Anem 

filtered 

1 min 

res 

WP 

filtered 

1 min 

res 

Dev.  

1 min 

res 

(%) 

1 hr res 

Anem 

filtered 

1 hr res 

WP 

filtered 

1 hr res 

Dev.  

1 hr res 

(%) 

V 1 57.37 57.37 66.43 12.83 66.43 64.40 56.47 12.32 

V 2 59.23 59.23 58.79 0.64 58.79 57.07 57.34 -0.47 

V 3 64.32 64.32 64.85 1.08 64.85 59.61 59.58 0.05 

V 4         

V 5 58.00 58.00 57.73 -0.15 57.73 55.79 56.58 -1.42 

V 6 61.58 61.58 61.09 -0.01 61.09 58.23 59.48 -2.13 

V 7 70.53 70.53 70.59 -4.29 70.59 61.01 65.67 -7.63 

V 8 61.80 61.80 61.72 -2.18 61.72 55.99 58.96 -5.31 

V 9 63.38 63.38 63.50 -2.97 63.50 57.17 60.02 -4.98 

V 10 63.05 63.05 62.81 -1.35 62.81 59.59 61.15 -2.62 

V 11 55.60 55.60 55.28 -1.02 55.28 52.71 53.42 -1.34 

V 12 71.81 71.81 72.13 -0.74 72.13 69.09 69.10 -0.02 
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Table X: Fuel Consumption per Nautical Mile 4-month average 4-8 Bft filtering 

Vessels 
1 min 

res 

Anem 

filtered 

1 min 

res 

WP 

filtered 

1 min 

res 

Dev.  

1 min 

res 

(%) 

1 hr res 

Anem 

filtered 

1 hr res 

WP 

filtered 

1 hr res 

Dev.  

1 hr res 

(%) 

V 1 57.37 76.47 58.36 23.68 66.43 74.75 58.33 21.97 

V 2 59.23 61.60 60.28 2.14 58.79 62.30 60.49 2.91 

V 3 64.32 66.44 65.15 1.93 64.85 68.36 65.79 3.76 

V 4         

V 5 58.00 59.32 58.93 0.65 57.73 59.77 58.89 1.47 

V 6 61.58 64.52 64.34 0.28 61.09 65.89 63.88 3.04 

V 7 70.53 72.46 73.47 -1.39 70.59 73.44 74.47 -1.41 

V 8 61.80 64.57 65.40 -1.29 61.72 65.66 65.67 -0.02 

V 9 63.38 65.93 65.40 0.80 63.50 67.81 66.09 2.54 

V 10 63.05 64.65 65.12 -0.72 62.81 65.64 65.33 0.47 

V 11 55.60 57.17 57.03 0.24 55.28 58.90 56.92 3.37 

V 12 71.81 73.37 74.29 -1.25 72.13 74.09 74.75 -0.89 

 

Based on the observations from Tables IX and X, the following conclusions can be drawn: 

 

• With average values, small deviations are appeared which may suggest that the choice of wind 

speed data source has a limited impact on the calculated KPI for most vessels. On the other 

hand, even small differences may affect vessel comparison and benchmarking of sister vessels. 

There is one vessel exhibiting a deviation over 20%, which triggers further investigation.  

 

 
Fig.7: Vessel 3 Fuel Consumption per Nautical Mile-Speed 11-12 kn, Head Winds, Laden 

 

 
Fig.8: Vessel 5 Fuel Consumption per Nautical Mile-Speed 11-12 kn, Head Winds, Laden 
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Fig.9: Vessel 6 Fuel Consumption per Nautical Mile-Speed 11-12 knots, Head Winds, Laden 

 

• KPI values need to be reconsidered in order to represent actual sailing condition of the vessel. 

With this in mind the contours plots of Figs.7 to 9 present more accurately the sensitivity of the 

KPI to the wind speed source. After vessel speed and wind direction filtering, it is valid to 

assume that the magnitude of the KPI is mostly affected by the weather conditions. We may 

observe that the consumption per nautical mile follows more consistently the TWS than the 

WPWS values. This proves that when reliable data from sensors are available, more advanced 

calculations may reveal helpful outcomes for decision-making and justify vessel behaviour. 

 

4.2.4 Propulsion Efficiency 

 

Table XI: Propulsion Efficiency 4-month average 0-4 Bft filtering 

Vessels 
1 min 

res 

Anem 

filtered 

1 min 

res 

WP 

filtered 

1 min 

res 

Dev.  

1 min 

res 

(%) 

1 hr res 

Anem 

filtered 

1 hr res 

WP 

filtered 

1 hr res 

Dev.  

1 hr res 

(%) 

V 1 6.37 5.64 6.50 -15.33 5.51 5.75 6.73 -17.00 

V 2 5.92 6.00 6.03 -0.53 6.15 6.48 6.39 1.43 

V 3 6.18 6.65 6.96 -4.70 6.25 7.02 7.39 -5.32 

V 4 6.42 6.50 6.46 0.59 6.65 6.80 6.67 1.86 

V 5 5.96 6.09 6.09 -0.11 6.07 6.39 6.28 1.69 

V 6 5.91 6.02 6.08 -0.95 6.19 6.72 6.56 2.40 

0V 7 4.52 4.87 4.72 3.15 4.54 5.06 4.77 5.81 

V 8 5.11 5.52 5.31 3.89 5.16 5.81 5.39 7.28 

V 9         

V 10 5.49 5.62 5.65 -0.50 5.54 5.77 5.78 -0.26 

V 11 6.22 6.56 6.41 2.29 6.37 6.93 6.66 3.93 

V 12         

 

Table XII: Propulsion Efficiency 4-month average 4-8 Bft filtering 

Vessels 
1 min 

res 

Anem 

filtered 

1 min 

res 

WP 

filtered 

1 min 

res 

Dev.  

1 min 

res 

(%) 

1 hr res 

Anem 

filtered 

1 hr res 

WP 

filtered 

1 hr res 

Dev.  

1 hr res 

(%) 

V 1 6.37 4.41 6.06 -37.63 5.51 4.52 6.08 -34.50 

V 2 5.92 5.58 5.69 -1.97 6.15 5.50 5.72 -3.93 

V 3 6.18 6.03 6.09 -1.06 6.25 5.80 6.12 -5.47 

V 4 6.42 6.23 6.28 -0.79 6.65 6.30 6.40 -1.59 

V 5 5.96 5.78 5.79 -0.21 6.07 5.74 5.79 -0.83 

V 6 5.91 5.35 5.36 -0.22 6.19 5.28 5.52 -4.72 
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V 7 4.52 4.40 4.37 0.68 4.54 4.35 4.34 0.42 

V 8 5.11 4.76 4.73 0.68 5.16 4.63 4.70 -1.52 

V 9         

V 10 5.49 5.31 5.24 1.35 5.54 5.33 5.20 2.44 

V 11 6.22 5.70 5.81 -1.89 6.37 5.54 5.96 -7.59 

V 12         

 

The observation of the values at Tables 10 to 12 may lead to the following conclusions: 

 

• The KPI values in good sailing conditions generally exhibit small sensitivity to the source of 

the wind speed data.  

• The deviation in KPI values is generally larger when using 1-hour resolution compared to the 

1 min resolution.  

• When filtering in the range of 4-8 Bft deviation is increased. 

 

4.2.5 Special Case 

 

A special case where the data resolution affected significantly a KPI calculation is presented below. 

Subject values correspond to vessel V7 and were recorded in November 2023. A screenshot is used 

from LAROS™ DAS software, Fig.7. Measurements correspond to 1 min resolution. As can be noticed, 

while applying the 0-4 Bft filter some values of power deviation passed through although it is clear that 

the general environmental conditions are not changed and the vessel behavior was aligned with those 

conditions (high power and consumption). These sort lasting, below 4 Beaufort anemometer values, 

affected the monthly power deviation calculation giving a misleading result. To overcome this the 15 

min average wind speed in Beaufort has been used aiming to filter data for good weather conditions.  

 

 
Fig.7: Effect of anemometer wind measurement fluctuation on KPI calculation 

 

5. Conclusions and Future Work 

 

The quality of ship data is important for accurate technical performance evaluation. Sensor accuracy or 

the vessel superstructure may influence wind data accuracy from ship’s anemometer. Nowcast wind 

data from weather providers may substitute anemometer data for general purpose statistical analysis, 

although they might not be true. In general, comparing nowcast data with onboard data for a vessel or 

sister vessels, may give insights on potential sensor issues that need attention. From the current study, 

where data from 12 vessels for a 4 month period were analyzed, the following were derived: 



87 

• Anemometer and weather provider wind speeds exhibit significant correlation at 1-hour 

resolution.  

• Weather provider wind speeds exhibit significant variation from anemometer in changing 

weather conditions and should be used with caution for performance analysis.  

• At some cases the, predicted with CFD simulation, influence of ship superstructure on the 

anemometer accuracy is confirmed. Consistent behaviour across sister vessels suggests re-

liable anemometer readings. Significant discrepancies warrant further investigation for po-

tential sensor issues if the weather provider data are accurate.  

• Average absolute difference and RMSE between the two data sources are relatively big 

(around 2-3 m/s or the order of 1 Bft). This suggests that the choice of data source may 

affect overall true performance analysis.  

• Some KPIs are affected more and other less by the wind data source when filtering was 

applied. These variations generally do not significantly alter overall performance analysis 

conclusions but may affect comparison and benchmarking among vessels. The choice of 

the proper KPI might be significant if only WP wind data are available. 

• The wind data source affected more the deviation of the KPI averages for winds over 4 Bft. 

Performance analysis at over 4 Bft weather conditions is important, since these weather 

conditions represent a significant proportion of the vessels’ voyage time.  

• In specific cases, using high-frequency anemometer data may introduce noise and compro-

mise filtering, potentially impacting KPI calculation accuracy. Using proper tools, these 

cases may be identified in order to apply filtering with lower resolution.  

 

For future work, a similar study for sea current calculated as vessel speed over ground minus speed 

through water vs sea current from the weather provider is recommended. Additionally introducing 

sensor reliable timeseries and weather provider data into AI models, may exploit further the relationship 

between true and model weather parameters and enhance performance assessment with tools that today 

are available only to LAROSTM© users.  
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Abstract 

 

The reliability of ocean currents is not sufficiently taken into accounts in ship route optimization and 

post-voyage analysis for vessel performance modeling. In order to quantify the accuracy of the vari-

ous ocean forecasting models, we have collected several hundred thousand of in-situ measurements 

in order to build up a reference base for validation and training of our AI-data driven models over 

several navigation zones. These measurements come from drifting buoys, ADCP measurements or are 

calculated from high-frequency navigation data from several vessels across the globe. Our analyses 

indicate that the reliability and accuracy of the Operational high-Resolution Currents forecAst (OR-

CAst) that we have developed exceed those of standard numerical models that are most widely used 

by the shipping industry. Our work presents case studies quantifying the benefits of high-resolution 

oceanic current data in different regions for fine scale routing as well as for better estimation of the 

speed through water for ship performance analysis. 

 

1. Introduction 

 

Surface currents affect all ships across the globe. Adverse currents slow ships down, increasing fuel 

consumption as vessels compensate to maintain their Estimated Time of Arrival (ETA). Conversely, 

favorable currents enhance a ship’s speed over ground, allowing temporary power reduction while 

maintaining the ETA. However, it is very difficult for numerical models to correctly localize ocean 

currents or eddies, which are much smaller than anticyclones or atmospheric storms.  

 

A survey carried out by Amphitrite in 2023, questioning captains of commercial vessels, allowed us 

to highlight this difference between MetOcean variable predictions, Moschos et al. (2024). Almost 

eighty vessel captains replied - among others - to the question "What is your opinion on the reliability 

of Weather and Ocean Forecasts? ". Not surprisingly, while wind and wave data were deemed of 

good reliability by 70% and 66% of respondents correspondingly, only 7% of captains thought the 

same about ocean currents data at their disposal. On the contrary a 35% believes that the current data 

available today are of poor reliability. 

 

How then can we assess and improve reliability of ocean current forecasts? Contrary to numerical 

modelling, satellite observations of the sea surface topography deduce daily information on sea sur-

face currents, Chelton et al. (2001,2011), Ballarotta et al. (2019). Moreover, recent studies using ad-

vanced Machine Learning methods have shown that satellite altimetry including the new SWOT mis-

sion can be complemented by additional satellite information provided by other sensors such as infra-

red or visible observations to provide reliable, high-resolution ocean surface data: Moschos et al. 

(2023), Martin et al. (2023), Kugusheva et al. (2024), Ciani et al. (2024), Fablet et al. (2024) ; Gar-

cia et al. (2025). This new generation of AI models, which fuse various satellite observations, is set to 

revolutionize ocean forecasting. However, the performance of these new forecasting models needs to 

be precisely validated. Validation metrics need to be adapted to the needs of maritime navigation. The 

performance of these models needs to be assessed in high-traffic areas, where currents impact on ship 

speed and hence fuel consumption. The use of navigation data from merchant ships or data from 

oceanographic campaigns is very useful in this respect. In addition to validation, these data can also 

be used for the final training and the fine-tuning of AI models. 

 

This new generation of high-precision ocean data enables a new form of short-term optimal routing 

that fully exploits the potential of surface currents. Traditional weather routing, primarily employed 
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for trans-oceanic voyages, allows ships to avoid major storms and adverse sea conditions. However, 

for short-sea shipping, especially in enclosed seas, coastal areas, or channels, more intricate routing is 

required. Several examples of short-term optimal routing were first presented in the Mediterranean 

Sea by Moschos et al. (2024). Fine scale routing, using oceanic currents, might also be relevant for 

trans-oceanic voyages. Even in the middle of the North Atlantic Ocean or at the tip of South Africa 

veins of currents can be used to speed up a ship’s journey. 

 

This paper demonstrates that employing reliable ocean current forecasts at high-resolution can im-

prove the optimal ship routing strategies while also enhancing vessel energy efficiency modelling. By 

employing surface drifters released all over the globe during oceanographic campaign and vessel data 

sailing in various area, we can quantify precisely the accuracy of the surface current forecast provided 

by our ORCAst AI-based model. These novel and reliable ocean current data allow for a short-term 

optimal routing solution with a low cost, low risk and significant gains in fuel consumption. This can 

offer a competitive advantage for shipping companies in the general context of the recent introduction 

of the Carbon Intensity Index (CII) by the IMO, the EU ETS regulations or the use of bio-fuels or e-

fuels that will lead to significant additional costs in a green-fuel future.  

 

2. Ocean currents: in-situ measurements 

 

Direct measurement of offshore surface currents has always been a challenge for oceanographers. 

These currents can vary on spatial scales of a few tens of kilometers and temporal scales of a few 

days. In-situ measurements can be highly accurate, but they are still very sparse and do not provide an 

instantaneous map of currents, even over a very small area of a hundred square kilometers. These in-

situ measurements are nevertheless necessary to test and validate numerical models, but they can also 

be used to train a new generation of deep-learning models, as we shall see later. The most commonly 

used in-situ measurement methods are described below. 

 

2.1. Surface drifters 

 

For many years, meteorological and oceanographic institutes have been deploying drifting buoys to 

automatically measure the Sea Surface Temperature (SST). These buoys are attached to floating an-

chors that drift with ocean currents. The SST measurements and the GPS position of these drifting 

buoys are transmitted by satellite every hour, aloowing to track their trajectory and measure their 

mean drift speed with an accuracy of a few centimeters per second (i.e. less than a tenth of a knot).  

 

 
Fig.1: Trajectories and velocities of the surface drifters used for validation between the Cape of Good 

Hope and Mozambique Channel at the tip of South-Africa. More than 20 170 in-situ measure-

ments of the surface velocity (at 10m) were collected in 2023. The color indicates the magni-

tude of the current intensity.  
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Drifting buoys with floating anchors that extend ten meters below the surface allow us to measure the 

surface currents that impact cargo ships. In order to filter-out fast inertial waves we compute a daily 

average speed. As the number of buoys is very limited, these daily measurements are few in number, 

and several months of data must be accumulated to obtain a statistically representative set. The map 

in Fig.1 shows the measurement points taken over one year (2023) in the Cape of Good Hope region, 

which is a major shipping route between the Indian Ocean and the South Atlantic. In this area, the 

current dynamics are complex and very intense, with current speed often exceeding 2 or 3 knots. 

However, even with more than 20 170 measurements points drifters are sparse and there are many 

white zones where no measures have been taken. 

 

2.2. Vessel Mounted ADCP 

 

Acoustic Doppler Current Profilers (ADCP) measure water movement by interpreting sound waves 

(“pings”) transmitted by the instrument and subsequently reflected back to the instrument from parti-

cles in the water, such as sediment, plankton or other small particles. They rely on the Doppler effect 

to determine the speed and direction of those passively moving particles, or “scatterers,” thereby de-

termining the speed and direction of the currents as well. The Vessel Mounted ADCP measures the 

speed and direction of currents at multiple depths from the vessel to the seabed. The number of cells 

(i.e., depth layers) and the instrument’s range are determined by the frequency of the ADCP. A 

75KHz VM-ACDP can measure currents down to 1000m with a vertical resolution of 10-20m, while 

a 1000Hz instrument can measure surface currents down to 30m with a vertical resolution of 0.5-1m. 

In one or two days’ sailing, an oceanographic vessel can then cross several times current veins and/or 

eddy structures. Unlike drifting buoys, we can use VM-ADCP measurements to position these dy-

namical structures and characterize horizontal velocity gradients with high precision.  

 

2.3. X-Band radar 

 

Recent technology, based on an imaging X-band radar, provides direct measurement of ocean surface 

current. Digitized radar images are processed with 3D fast Fourier transform (FFTs) to compute a 3D-

power spectra of surface gravity waves. The doppler shift induced by the surface currents causes the 

energy in the 3D spectra frequency planes to be located on ellipses, rather than circles. Based on the 

power distribution in the wavenumber-frequency spectra, the current vector and the vessel Speed 

Through Water (STW) can be estimated, Gangeskar (2018a,b), Bertelsen (2020). When the wind in-

duced surface gravity waves generates a minimal level of sea surface roughness, current can be meas-

ured in a large area covered by the radar images, in front of the ship and at a reasonable distance from 

the vessel hull. Today, only a few commercial vessels are equipped with this technology but they al-

ready allow us to accurately test the reliability of various ocean forecasts models along several ship-

ping routes. In this study we use the data collected during seven voyages of bulk carriers, crossing the 

Mediterranean Sea in 2023, equipped with the MIROS WAVEX system. 

 

2.4. Ship navigation data 

 

An increasing number of ships are now equipped with automatic high-frequency navigation data re-

cording systems. This represents a significant advance over the data available with standard noon-

reports. It is then possible to use navigation data, recorded and average every 5 or 15 minutes along 

the ship's route. While GPS data is relatively accurate for speed (SOG) and course (COG) over the 

bottom, this is not always the case for heading and, above all, the Speed Through Water (STW). 

Ikonomakis et al. (2021) has demonstrated the limitations of vessel speed-log measurements (STW) 

which are heavily influenced by the hull, fouling, air bubbles turbulences or inaccurate calibration, 

Antola et al. (2017), Haranen et al. (2017).  

 

2.4.1 Speed log recalibration 

 

STW measurement is strongly affected by the displacement of the water around the hull, and there-

fore by the vessel's draught. Therefore, the standard speed log needs to be re-calibrated for each port-
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to-port trip. The first correction consists in correcting a constant offset on speed. Fig.2 shows the 

STW measurement made by a standard electromagnetic speed-log and the same STW measurement 

made by a Doppler Velocity Log (DVL) which measures water speed several meters below the hull. 

This DVL measurement is unaffected by the ship's hull or draught, and is therefore taken as a refer-

ence measurement. Precise calibration of this instrument, carried out by the GENAVIR quality team, 

shows that the margin of error is around 0.5% of the speed range. For a speed of around 15 knots, this 

corresponds to a precision of less than 0.1 knots. The speed variations measured by the two sensors 

are almost similar along the entire route, but offset by a constant value. A shift of 0.8knots on the 

STW measured by the electromagnetic speed-log along the whole voyage is the first correction to be 

applied to this sensor. 

 

 
Fig.2: Speed Through Water (STW) measurement with two different sensors on the same vessel for a 

5 days transit. The blue line corresponds to the Doppler Velocity Log (DVL), while the yellow 

line corresponds to the electromagnetic speed log. The mean difference between the two aver-

aged STW, along this transit, is of 0.82 knots. 

 

We introduce a specific method to evaluate the offset error and recalibrate the STW measurement, 

Moschos et al. (2024). To do so, we use our HIRES-CURRENTS data and select, along the ship 

track, the points were surface current are weak (i.e. current intensity < 0.1 knots). For such low values 

of the surface current and when the angle (heading-COG) is less than 6°, we should expect 

SOG=STW. We then compute, for these selected points, the mean value of the offset <SOG-STW> 

per voyage and correct the speed through water STWc=STW + <SOG-STW> to get on average 

<SOG-STWc> = 0.  

 

2.4.2 Current impact along the ship track 

 

We can then compute for each voyage, thanks to these high frequency navigation data, the current 

impact along the ship track. In other words, how the surface current, acting on the whole hull, will 

modify the ship's speed (SOG). Fig.3 shows an example of this current impact ΔU=SOG-STWc for a 

23000 TEU container ship crossing the Mediterranean Sea from Port-Said to Gibraltar in august 2023 

at a mean sailing speed of 18 knots. As expected, the container ship is slowed down by almost 2 knots 

of facing currents induced by a recurrent anticyclonic gyre in the Alboran sea, just before the Gibral-

tar strait, Renault et al. (2012). However, all along the route several speed fluctuations from 0.5 to 1 

knot, induced by fine scale coastal currents, can be measured. On average the cumulated current im-

pact along this voyage is about -0.5 knots. This will have a non-negligible impact on the mean voyage 

speed and the ETA at Gibraltar will be delayed by 3 hours in comparison with the ETA computed by 

the ECDIS that doesn’t account for oceanic currents. 

 

The accurate estimation of the current impact ΔU is crucial for precise ETA prediction and for relia-

ble voyage or speed optimization. But it is also important for post voyage analysis when vessel per-

formance management is concerned or to evaluate hull and propeller designs, the efficiency of hull 

coating, the hull and propeller cleaning.  
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0  

Fig.3: The route followed by the container ship from Port-Said to the Gibraltar strait from  

21/08/2023 to 26/08/23 (upper panel). The colors indicate the intensity of the current impact 

ΔU=SOG-STW: green correspond to positive currents while red and yellow ones to adverse 

current along the ship route. 

 

3. Ocean current forecast: numerical model 

 

Our past survey of ship captains revealed that, according to their experience at sea, ocean current 

forecasts are perceived as much less reliable than the wind and wave forecasts. For 70% of captains, 

the reliability of ocean current forecasts is average or poor, Moschos et al. (2024). This is because it is 

very difficult for ocean numerical models to correctly localize currents veins or eddies, which are 

much smaller than anticyclones or atmospheric storms. The typical diameter of a storm is around 

1000 km, whereas an oceanic eddy is ten times smaller. In addition, there are far fewer measurements 

in the ocean than in the atmosphere to correctly initialize ocean numerical models. 

 

This leads to an inaccuracy of several tens of nautical miles in the positioning of the main current 

veins and ocean meanders. This explains the large discrepancies between the predictions of the main 

operational models and the slowdowns or accelerations induced by real currents on ships. The exam-

ple below shows localizations of eddies and meanders in the Cape of Good Hope region (same area as 

Fig.1), predicted by two different ocean general circulation models on the period, Fig.4. The intensi-

ties and the localizations of the eddies and meanders looks similar at large scale, when we look in de-

tails significant differences appear between the two models. If we plot the current impact for a vessel 

sailing at 16 knots along the main shipping line in this area (Figure 4 bottom panel) we can quantify 

the differences between these two currents data. The forecasts for the first half of the route, between 

38°E and 50°E of longitude, seems similar (with different current intensities), they differ significantly 

for the second half along the South African coast where the current impact can be reversed. 
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Fig.4: Nowcast of surface current intensity on May, 21, 2023 according to two global operational 

oceanic models distributed by the EU’s (top left) and by the US’s (top right) maritime ser-

vices. The red dashed red line corresponds to the mean ship route from Asia to the UE or the 

US. Significant differences of the current impact ΔU=SOG-STW can be seen all along this 

trajectory between these two models (bottom) for a ship sailing at 15 knots.  

 

4. Validation metrics 

 

Various in-situ data can be used to validate surface current data and forecasts. We have chosen to 

combine current measurements made by drifting buoys, VM-ADCP measurements obtained during 

oceanographic campaigns and some measurements made by an X-band radar system installed on cer-

tain commercial vessels. Only currents of sufficient intensity have been included in this reference 

base. We have arbitrarily chosen an amplitude greater than half a knot, considering that below this 

value the precision of the measurement is not sufficient, and that these weak currents will have little 

impact on the bottom speed of ships which generally sail above 10 knots. 

 

To compare these reference data with the different ocean forecasting models, we need to choose ap-

propriate metrics. We have chosen two specific metrics to quantify both current direction and intensi-

ty errors.  

 

We first compute the error angle θ between the measured velocity vector of the reference data and 

those forecasted by the different models. Small values of θ indicate sea surface currents that remain 

along a similar direction with the in-situ measurements, while larger values of θ will indicate a strong 

misalignment or even opposite current direction! The percentage of misalignment angle among all 

measurements are split in four colors-categories: deep green - excellent (θ <15°), light green - correct 

(15°< θ <45°), orange - inaccurate (45°< θ <90°) and red-wrong (90°< θ). 

 

A second metric is based on the error vector: the difference between the measured velocity compo-

nents and the forecast velocity. We compute the amplitude of this error vector and we normalized it 

by the mean amplitude of all the measured velocities used in the reference data set for the studied ar-

ea. Therefore, we built a dimensionless error parameter, the Normalized Error Vector Amplitude 

(NEVA) which take into accounts directional and amplitude errors of the surface currents forecasts. 

 

𝑁𝐸𝑉𝐴 =
‖𝑉⃗ 𝑚𝑜𝑑𝑒𝑙 − 𝑉⃗ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑‖

𝑎𝑣𝑔 (‖𝑉⃗ 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑‖)
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As for the error angle parameter, we split the NEVA parameter in four colors-categories: deep green - 

excellent (NEVA<30%), light green - correct (30%<NEVA<60%), orange - inaccurate 

(60%<NEVA<100%) and red-wrong (100%<NEVA). 

 

 
Fig.5: We compare both error angle (left) and Normalized Error Vector Amplitude (NEVA) (right) of 

measured surface currents (black arrow) with direction of the model forecast (blue arrow).  

 

5. ORCAst: a high-resolution AI data-driven oceanic model 

 

Since the early 2020s, research teams at major technology companies have been revolutionizing 

weather models by developing deep learning systems for operational atmospheric forecasting such as 

Google’s GraphCast, Lam et al. (2022), Microsoft’s Climax, Nguyen et al. (2023), or NVIDIA’s 

FourCastNet, Pathak et al. (2022). The AMPHITRITE R&D team, which comes from France's AI 

and oceanography research laboratories, develops similar forecasting models for the ocean. However, 

our deep learning systems are specialized models, trained specifically to predict ocean surface cur-

rents rather than a complete 3D model of the ocean. This specialization boosts the reliability of our 

Operational High-Resolution Current Forecasts (ORCAst) model providing high-resolution ocean 

data, Garcia et al. (2025). The ORCAst deep learning framework produces 1/30° high-resolution 7-

day forecasts of ocean currents in the global ocean. 

 

5.1. Model architecture and training strategies 

 

Our flexible approach allows us to fuse multivariate observations of the ocean such as in-situ meas-

urements of currents (i.e. surface drifters), satellite altimetry, and satellite imaging of sea surface 

temperature and chlorophyll-a, to improve the spatial resolution and prediction of the temporal evolu-

tion surface currents, Kugusheva et al. (2024), Garcia et al. (2025). However, training a model that 

leverages the diverse range of oceanographic observations—such as sparse in-situ measurements, sat-

ellite altimetry, and high-resolution satellite imagery—is challenging due to the differing temporal 

coverage and resolutions of these data sources. To overcome these difficulties, we train our model 

using a multiple stage training strategy, to learn a first approximation the geostrophic currents from 

standard altimetry fields as ground truth, and to progressively refine the learning using scarcer, but 

more precise or direct observations: SWOT and finally in-situ velocity measurements. 

 

KaRIn altimetry from SWOT provides exciting opportunities for precise reconstruction of the sea sur-

face dynamics. SWOT provides 120 km-wide swaths of high-resolution observations (NASA/JPL). 

This precision allows observation of mesoscale/submesoscale oceanic patterns. We have shown that 

training our model using the new generation of SWOT data, available since 2023, as targets led to 

significant improvements. However, only one satellite is presently in orbit, its revisit time period is 21 

days, which leaves important areas unobserved. Finally, adding sparse in-situ measurements finetune 

the intensities of the surface currents forecast. 

 

5.2. Model accuracy in comparison with standard ocean global circulation models 

 

We use the validation metrics, detailed in section 4, to perform a quantitative inter-comparison of the 

accuracy of the ORCAst model with two operational ocean models widely used by maritime stake-

holders. These two numerical models represent the state-of-the-art operational ocean forecasting sys-

tem provided by the EU (Mercator/Copernicus) or US (GOFS/NOAA) maritime services. We choose 
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for this validation the specific region between the Cape of Good Hope and the Mozambic channel, 

Figs.1 and 4. This is an area of strong currents along a major shipping route between Asia and EU or 

the US. We have collected in this area more than 24 000 in-situ measurements points obtained from 

autonomous drifters or vessel mounted ADCP between 2022 and 2024. This set of reference data, 

independent of the data used during the learning phases of ORCAst, enables us to test the accuracy of 

our 7-days forecasts. Fig.6 shows that, in this area, the accuracy (corresponding to good or excellent 

label) of several numerical models of the ocean does not exceed 45-60%. This low level of reliability 

makes it impossible to carry out a fine-scale ship routing to avoid adverse currents and to navigate in 

more favorable regions. Regardless of the optimization algorithm, if the ocean data is poor, ship rout-

ing will be unreliable. However, our AI data-driven ocean forecast provide a much higher accuracy, 

always higher than 60% and up to 80%. Moreover, the percentage of excellent forecasts is increased 

by 60% while the percentage of wrong forecasts is divided by two or three. Similar scores were also 

found in the Mediteranean Sea and the Northern Atlantic regions, NN (2025). 

 

 
Fig.6: Comparison of the distribution of the error angles (left panel) or the Normalized Error Vector 

Amplitude (right panel) of surface currents between the 7 days forecast of HIRES-CURRENTS 

(first column) and those of two standard ocean models of global ocean (second and third col-

umns). The percentage of misalignment angle or NEVA amongst all measurements are split in 

four colors-categories: deep green = excellent (θ<15° or NEVA<30%), light green = correct 

(15°<θ<45° or 30%<NEVA<60%), orange = inaccurate (45°<θ<90° or 60%<NEVA<100%) 

and red = wrong (90°<θ or NEVA>100%).  

 

6. Accurate SOG forecast along the Suez-Gibraltar route 

 

For a container-ship, compliance with the ETA is a major operational constraint. Apart from any op-

timization of the ship's route, optimizing speed for a given ETA reduces fuel consumption and CO2 

emissions. In calm sea conditions, as often encountered in the Mediterranean Sea, the current is the 

main cause of error in the ETA calculation.  Therefore, to optimize the speed setting, it is necessary to 

anticipate, a few days in advance, the changes in the bottom speed (i.e. SOG) caused by currents. The 

example below, on the Concorde's route in August 2023 (same as Fig.3), shows how the surface cur-

rent modifies the SOG. Our HIRES-CURRENT forecasts (green line in Fig.7), is very close to the 

surface current impact measured by the ship. 

 

To quantify the accuracy of the current impact along the ship route we compute the following error 

index: 

𝐸𝑟𝑟𝑜𝑟 =
𝑅𝑀𝑆(|∆𝑈𝑚𝑜𝑑𝑒𝑙 − (𝑆𝑂𝐺 − 𝑆𝑇𝑊𝑐)|)

𝑀𝐸𝐴𝑁(|𝑆𝑂𝐺 − 𝑆𝑇𝑊𝑐|)
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Fig.7: Comparison between the measured current impact ΔU=SOG-STWc and the forecast of our AI 

data-driven model HIRES-CURRENTS (green line) or the forecast of two global operational 

oceanic models distributed by the EU’s (red line) or by the US’s (pink line) maritime services. 

 

This error index is normalized by the mean amplitude of the measured current for the whole data-set: 

∆𝑈𝑚𝑒𝑎𝑛 = 𝑀𝐸𝐴𝑁(|𝑆𝑂𝐺 − 𝑆𝑇𝑊𝑐|) = 0.52 𝑘𝑛𝑜𝑡𝑠. We filter out from the analysis the low values of 

surface currents ( |𝑆𝑂𝐺 − 𝑆𝑇𝑊𝑐| < 0.25𝑘𝑛 ) having a small impact on the SOG. We analyzed six 

voyages of container ships along the main Mediterranean shipping line from Port-Said (i.e. exit of the 

Suez-Canal) to the Gibraltar strait from August to October 2023. We have completed this first study 

(Moschos et al. 2024), with the analysis of navigation data from slower ships, two bulk-carriers that 

crossed the Mediterranean between November 2022 and March 2024. These ships are equipped with 

the WAVEX system, which provides accurate STW data. To improve the reliability of the dataset, we 

filtered out inconsistent measurements. Table I provides the error on the current impact according to 

the surface current forecasts provided by the state-of-the-art of Ocean Global Circulation Models: 

Mercator (E.U.), GOFS (U.S.) and MFS (Italian regional model).  

 

Table I: Error index of the current impact for various surface current forecasts: the HIRES-

CURRENTS provided by ORCAst AI model and the surface currents of three state-of-the-

art operational ocean models provided by the marine service of the E.U, U.S. or Italy (IT). 

Ship Voyage 

Mean 

vessel 

speed 

(knots) 

ERROR INDEX 

HIRES-

CURRENTS 
E.U. U.S.  IT 

Container Ships  

23 000 TEU 

 

Container-ship 1 Suez->Gibraltar 17.8 0.66 1.12 0.99 1.13 

Container-ship 1 Gibraltar->Suez 17 0.63 0.95 1.02 1.04 

Container-ship 2 Suez->Gibraltar 18.5 0.66 1.07 1.06 0.83 

Container-ship 3 Gibraltar->Suez 15.8 0.51 0.83 0.92 0.75 

Container-ship 4 Malta->Suez 14.4 0.48 0.6 0.88 0.84 

Container-ship 5 Suez->Gibraltar 18.2 0.83 0.82 1 0.89 

AVERAGE 0.70 0.91 0.98 0.91 

Bulk-carriers 

34 700 GT 

 

Bulk-carrier 1 Gibraltar->Suez 12.1 0.45 0.85 0.79 0.74 

Bulk-carrier 1 Suez->Gibraltar 11.6 0.86 1.03 0.99 1.07 

Bulk-carrier 1 Suez->Gibraltar 10.9 0.79 1.01 0.84 - 

Bulk-carrier 2 Malta->Gibraltar 10.9 0.82 0.89 1.17 0.93 

Bulk-carrier 2 Gibraltar->Suez 12.7 0.71 0.90 0.83 0.85 

Bulk-carrier 2 Suez->Gibraltar 11.7 0.66 1.06 0.70 0.87 

AVERAGE 0.71 0.96 0.89 0.89 
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For almost all the voyages (92%) the HIRES-CURRENTS forecasts have a higher score than any of 

the numerical model available for this area, with an error reduced, on average, by 30%. For the few 

other cases, the accuracy of the HIRES-CURRENTS is roughly the same as the OGCM. It can be 

seen that these different numerical ocean forecasting models have identical scores, and none is signif-

icantly better than the others. This quantitative analysis of the navigation data of various ships using 

different sensors type to measure the STW confirms that the AI data-driven ocean forecast, based on 

various satellite observations, provide a much higher accuracy than standard numerical models.  

 

7. Easy fuel savings with short-term optimal routing  

 

Our latest high-precision data enables a new form of short-term optimal routing that fully utilizes the 

potential of ocean currents. In the example below, we have analyzed a voyage where the gain is main-

ly due to surface currents. Here, we consider the route of a bulk carrier passing the Cape of Good 

Hope, with a speed of 13 knots, prescribed by its charter contract, for transport from Asia to Europe.  

 
Fig.8: Surface current impact (ΔU=SOG-STW) along direct and optimized route of a bulk carrier 

with speed STW=13 kn (upper panel). The surface currents (black arrows) are plotted the 15 of 

May 2023, when the ship is in the middle of the journey. The middle and the lower panels indi-

cate the amplitude of the wind and the wave field simultaneously for the direct (blue line) and 

the optimized route (green line). The black dotted line corresponds to the standard limit of 10-

knots winds for calm seas. 
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On this stretch of the route, south of the Mozambique Strait, the ship will cross an energetic area with 

several strong eddies and meanders, which will slow her down upstream of the Agulhas Current. If, 

on the other hand, it chooses a longer route, passing further north and then following the coast of 

South Africa, it will benefit from positive currents along this optimized route, which will increase its 

speed by an average of one knot for 5 days! The extra distance of this optimized route will then be 

more than offset by this significant speed gain. Analysis of historical weather data in this area shows 

a easterly wind flow with moderate winds (<10 knots) on both routes, and southwest wave field that 

will be slightly favorable on the optimized route. As wind and wave conditions are almost identical 

on both routes, the calculated gain is mainly due to ocean currents. The gain in ETA at the Cape of 

Good Hope is of the order of 5-6 hours over a 5-day trip, which corresponds to a fuel saving of 4.4%, 

but if this gain is then used to reduce the ship's speed before arrival at its destination port (i.e. Just In 

Time arrival) the fuel saving can climb to 8-12%, depending on the ship's consumption curve. For a 

bulk carrier with a daily consumption of 25T of fuel oil, this can represent a saving of $5500 to $8200 

(assuming an IFO price of 550$/ton) with just 5-6 additional waypoints on its route. The reduction in 

CO2 emissions can also reach 30 to 46 tons thanks to this short-term optimal routing.  

 

8. Conclusion  

 

Present operational numerical models, frequently used for forecasting oceanic conditions along a ship 

voyage, present limitations in reproducing oceanic currents with high reliability. On the contrary, the 

fusion of multiple satellite observations with AI-based models provides oceanic current data that are 

characterized by statistically smaller errors, especially for regions with strong currents. Precise vali-

dation of our high-resolution oceanic current forecasts with a reference data-set of in-situ measure-

ment and navigation data shows that the accuracy of HIRES-CURRENTS, generated by the ORCAst 

AI model, extends far beyond the state-of-the-art of ocean forecasting system. This new generation of 

accurate, high-resolution ocean data is now available for all the world's oceans, thanks to recent ad-

vances in ocean remote sensing and improved deep learning methodology. HIRES-CURRENTS data 

can be used to enhance operational routing applications, as well as to monitor ships' consumption 

curves. It's a low-cost, low-risk solution for the shipping industry. 
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Condition Monitoring 
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Abstract

 

This paper discusses the influences of vessel instrumentation, operation schemes and sea areas on the 

accuracy of hull condition monitoring. Based on experience, the same vessel performance model may 

show greatly differing ranges of data scatter and reliability depending on external factors beyond the 

control of the data analyst. Some of the common influences are discussed, before presenting mitigation 

strategies and approaches to improve the confidence in the results. 

 

1. Introduction 

 

In general, hull condition monitoring works by measuring a ship’s speed through water and the 

corresponding delivered power as primary parameters, and monitoring if that power demand increases 

over time. This principle is defined in ISO 19030:2016, Part 1, ISO (2016). Since other factors like 

vessel draft, weather conditions, etc. also influence the vessel’s hull resistance, further secondary 

parameters are recorded in addition. A mathematical vessel model is then used to make the data 

comparable over time, meaning filtering and normalizing them to a pre-defined set of reference 

conditions. 

 

The three general steps in the process are shown in Fig.1. The relevant data are recorded on board the 

vessels, sent to an onshore server where they are processed and evaluated using the vessel model, and 

then the results are displayed or reported to the ship owner or operator for their considerations and 

taking action if needed. 

 

 
Fig.1: General approach to hull condition monitoring 

 

Out of these three steps, the data processing and vessel modelling are in the hands of data analysts and 

their expertise. The instrumentation on board the vessel may be recommended by the data specialists, 

but the decisions are made by the ship owners. The importance of a meaningful integration of the 

sensors on board was highlighted in Fritz (2023). 

 

The communication of the results and their implementation in decision making is the third vital part of 

the process. In this paper, however, the focus will be on data acquisition and modelling, and more 

specifically on the topic which factors can be influenced by the data experts, which are beyond their 

control and how that influences the quality of the results. 

 

2. Hull Condition Monitoring Results Achieved with Grey Box Modelling 

 

2.1. Measuring the Primary Parameters 

 

Many ships today are equipped with shaft torque meters and/or fuel meters. Sometimes these devices 

are specifically bought with performance monitoring in mind, or for the purpose of documenting shaft 

power limitations with regards to the EEXI framework, IMO (2021). According to ISO 19030:2016 
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Part 3, alternative methods like mass flow meters may be used to measure the energy required to keep 

the vessel at its intended speed. Why this method may be preferrable is also discussed in Fritz (2023). 

In many cases, the fuel or shaft power meters are recommended or selected in agreement with the data 

analysts. 

 

The speed log to measure the ship speed through water on the other hand is typically chosen and 

installed independently of the goal of vessel performance monitoring. Its quality is often much harder 

to influence by the team responsible for hull condition monitoring. 

 

2.2. Albis Grey Box Modelling 

 

Albis Marine Performance has been using a grey box model for vessel performance analytics since 

2011. It is based on the third-power law also known from the admiralty formula, which states that the 

required propulsion power of a vessel rises to the cube of its speed through water. The benefits and 

limitations of this simple approximation were Bertram and Marioth (2024). To achieve realistic results, 

a grey box model combines the theoretical structure with empirical parameters derived from measure-

ment data. This vessel model has been continuously enhanced and improved since its first application 

and it’s the backbone of Albis’ current vessel performance modelling. But despite its tested and proven 

design, there are cases where its results are less than ideal, as shown in the following chapter. 

 

2.3. Scatter in Exemplary Fuel Consumption Trends 

 

Figs.2 to 4 show exemplary hull condition monitoring graphs of three different vessels. Each data point 

is the median result of a calendar day and when they exceed a limit that is equivalent to a 5% speed 

loss, they are highlighted in yellow as a warning. 

 

All three ships are equipped with highly reliable Coriolis mass flow meters, the same Albis V-PER 

software for data acquisition and processing, and the results were created using the same grey box vessel 

performance model as explained above. The measured main engine fuel consumption rates were 

extrapolated to a set of reference conditions that include a pre-defined ship speed, draft and good 

weather conditions. 

 

It becomes evident that the quality and informative value of the results differs greatly even though they 

were calculated with the exact same grey box model. The reasons for the vastly differing data scatter 

are found in influences beyond the control of the data analysts, as described in the following chapter. 

 

 
Fig.2: Vessel 1, exemplary normalized fuel consumption graph with significant scatter 

 



102 

 
Fig.3: Vessel 2, exemplary normalized fuel consumption graph with typical scatter 

 

 
Fig.4: Vessel 3, exemplary normalized fuel consumption graph with very low scatter 

 

2.4. Comparison of Exemplary Vessels 

 

The three exemplary vessels differ by type, but more importantly by their operational schemes and the 

functioning of their respective speed logs. 

 

• Vessel 1 is a 230 m long bulk carrier that operated mainly in the Gulf of Mexico, where there 

are strong and shifting surface currents. Many passages are short, there is a significant influence 

of maneuvering time when approaching or departing from ports and the ship speed varies. Most 

importantly, though, the speed log was unreliable to a degree that the GPS speed over ground 

had to be used for the vessel performance evaluations. 

• Vessel 2 is a 160 m long tanker that operated globally. Its speed and sea conditions varied. A 

very accurate speed log allowed the ship speed through water to be recorded with high 

confidence. Due to longer passages, there was a smaller share of maneuvering compared to the 

bulk carrier. 

• Vessel 3 is a 140 m long RoRo vessel that operated between Spain and Morocco, crossing the 

Strait of Gibraltar several times each day. There are strong surface currents in this area, but 

thanks to a reliable ship speed log their influence on the results was minimal. Since the ferry is 

bound by a strict schedule, many crossings were done at very similar speeds. Traversing the 

same body of water at the same speed in opposite directions is very comparable to the 

standardized double-runs used during speed trials according to ISO 15015:2025, ISO (2025). 

 

Table I summarizes the influences in direct comparison; Fig.5 shows the operating area of each vessel. 
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Table I: Main influences on data quality of vessels 1, 2 and 3 
 

Vessel 1 Vessel 2 Vessel 3 

Vessel Type Bulk carrier (230m) Tanker (160m) RoRo vessel (140m) 

Main Area Gulf of Mexico global Strait of Gibraltar 

Vessel Draft varying varying small variances 

Ship Speed varying varying small variances 

Sea Currents strong varying strong 

Speed Log unreliable accurate accurate 

Operation short passages, 
no distinct pattern 

longer passages, no 
distinct pattern 

very short passages, 
strict pattern 

 

 
Fig.5: Operating areas of vessels 1, 2 and 3 

 

3. Compensating the Influences Beyond the Control of Data Analysts 

 

3.1 Surface Currents in Weather Data 

 

The main reasons for data scatter in the results are linked to determining the ship speed through water 

accurately. Due to the cubic dependency of propulsion power and speed, a 1.5% error in the speed 

recording is about as detrimental as 5% inaccuracy from a shaft power or fuel meter. 

 

Global re-analysis results from weather data providers include the surface currents and can be accessed 

for each position of the vessel. A vectorial addition of these to the recorded GPS vessel data make it 

possible to generate a virtual speed through water that’s independent of the ship speed log. However, 

the surface currents in the weather data have a limited resolution both in time and geographical grid. 

Since the currents break down into smaller eddies and turbulences, the accuracy of this method is also 

limited. In addition, the weather models based on satellite data can only evaluate the water surface, 

while the currents that actually affect the vessel’s hull remain hidden, Fritz (2023). 

 

The surface currents in weather data should therefore rather be seen as a method to create applicable 

correction functions for the ship speed log rather than to replace it altogether. 
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3.2 AI Models 

 

As mentioned in chapter 2.2, the grey box vessel model applies correction functions to fundamental, 

physical dependencies like the third-power law. Establishing empirical parameters for these corrections 

becomes increasingly harder when different influences superimpose each other and cannot be evaluated 

independently. This is typically the case in poorer weather conditions. In the same way as fuel 

consumption warrants in charter agreements are usually limited to max. 4 Bft wind conditions, fuel 

consumption predictions become more and more erratic at higher wind speeds and sea states. 

 

In the Albis model, the datasets recorded at 5-12 Bft are therefore filtered out and only 0-4 Bft 

conditions are used for vessel performance evaluations with the grey box model. This reduction of total 

data increases the potential scatter. Individual outliers impact the daily medians more if there are fewer 

valid data points in total. 

 

Finding patterns in data with many variables is a strong point of AI models. Therefore they are well 

suited to widen the range of valid data and include weather conditions that were inaccessible without 

AI. Fig.6 shows a greatly simplified, qualitative comparison of grey box vs. AI model accuracy 

depending on weather and the respective limitations. Including data points between 5-7 Bft wind 

conditions increases the volume of valid data significantly and thereby helps to reduce data scatter. 

 

 
Fig.6: Simplified accuracy of grey box and AI models in different weather conditions 

 

 
Fig.7: Simplified accuracy of grey box and AI models with increasing data volume over time 

 

The disadvantage of AI models is their dependency on training data, though. While grey box models 

have a limited set of model parameters that may be estimated at first and then refined when the first 
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data of a new vessel become available, the complex multi-dimensional problems solved with AI require 

a much larger volume of training data to begin with. A typical grey box model may be adjusted to a 

new ship type rather quickly. Though after being fully parametrized, it also reaches its final capacity 

and does not improve any further. AI models on the other hand continue to improve over time, as more 

and more training data become available. Fig.7 shows a greatly simplified comparison of grey box and 

AI models with regards to available data. 

 

However, the lack of training data in AI modelling is not only a concern when a vessel was newly added 

to the fleet of evaluated vessels. It also becomes relevant when the vessel operates in conditions that 

were hardly included in the training data, like e.g., certain speed ranges or weather situations that were 

not encountered before. The drop in the AI modelling accuracy at 8-10 Bft in Fig.6 may be due to the 

increasingly unpredictable sea states at higher wind speeds, or simply a result of the fact that ship crews 

generally avoid these conditions and there are hardly any training data available. 

 

In essence, AI models are very well suited to interpolate within a data cloud with many dimensions and 

a large volume of data, but grey box models may still have the edge on them when it comes to 

extrapolating to previously uncharted territory. In shipping, this may e.g. be the case with ultra slow 

steaming that’s only used infrequently. 

 

The AI model also benefits greatly from high quality data during the training phase. If there are too 

many interferences and the random data scatter is too high, the AI results will be rather erratic as well. 

 

3.3 Hybrid Intelligence 

 

Since both the traditional grey box modelling and AI have advantages, it makes sense to use either 

model at its strongest. The Albis Hybrid Intelligence modelling approach combines the experience of 

human experts with artificial intelligence. As shown in Fig.8, the vessel data are processed both in the 

tested and proven grey box model and in a state-of-the-art AI algorithm. A set of boundary conditions 

is then applied to merge the outcome of both into a result with less data scatter and higher confidence 

than either model individually. 

 

 
Fig.8: Albis Hybrid Intelligence modelling approach 

 

Even at an early stage of development, results at Albis have already shown that the valid data used for 

hull condition monitoring can be increased by 70% and the scatter reduced by 40% when an AI 

algorithm is used in parallel to the grey box model. However, this result was achieved with vessel data 

that included reliable ship speed through water readings. It is questionable if the same would be possible 

if that variable was as unreliable as it was on the exemplary vessel 1 in chapter 2.3. 

 

4. Conclusion 

 

The area of vessel operation, trade schemes and typically also the quality of the ship speed through 

water data are beyond the control of the data analysts that report hull fouling trends or the effectivity of 

hull cleanings to the ship managers. Yet, these factors have a major influence on the quality of the 

results. To some extent, they can be compensated by accessing additional data and employing AI 

models. These come with their own challenges, though. AI algorithms require sufficient training to be 
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effective. When ships operate in conditions they hardly encountered before or their data were already 

erratic in the training phase, the AI results may be misleading. Cross-referencing them with a more 

robust, proven grey box model helps to mitigate these drawbacks and achieve better quality results that 

can be used with high confidence. 
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Abstract 

 

Comparison between three methods of monitoring Carbon Dioxide (CO2) and other gases from 

vessels. These include direct monitoring of the exhaust, calculation from engine load and metered 

fuel, the data has been collected over several weeks on the five engines on a cruise ship. The direct 

measurement monitoring system uses in-situ multi component gas analyser (CO2, CH4, SO2, NOx, 

H2O) and an averaging pitot tube flowmeter. The Continuous Emission Monitoring System (CEMS) 

reports CO2 in kg/hr enabling a comparison of the CO2 calculated from the engine fuel flowmeters 

and engine load in kg/hr. 

 

1. Introduction 

 

In 1997, the International Convention for the Prevention of Pollution from Ships (MARPOL), 

https://www.imo.org/en/about/Conventions/Pages/International-Convention-for-the-Prevention-of-

Pollution-from-Ships-(MARPOL).aspx, was expanded with the addition of Annex VI, titled 

"Regulations for the Prevention of Air Pollution from Ships." This annex aims to reduce emissions 

from vessels and lower the carbon intensity of the shipping industry. Its primary goal is to limit air 

pollutants from ships, thereby mitigating their impact on both local and global environmental issues. 

 

As of recent years, the marine industry is a significant contributor to global emissions, accounting for 

approximately 2-3% of global CO2 emissions. The emissions from maritime shipping mainly consist 

of carbon dioxide (CO2), nitrogen oxides (NOx), and sulphur oxides (SOx), which can have serious 

health and environmental impacts, including acid rain and global warming. 

 

The European Union (EU) has been proactive in addressing the environmental impact of shipping, 

establishing frameworks to monitor and reduce marine emissions. In 2015, the EU introduced 

Regulation (EU) 2015/757, EU (2015), which mandates the monitoring, reporting, and verification 

(MRV) of CO2 emissions from vessels. The regulation aims to provide a more transparent and 

accurate view of emissions from ships and lays the foundation for future reductions. The regulation is 

designed to promote energy efficiency in shipping by enabling better tracking and management of 

emissions. 

 

The inclusion of shipping in the EU Emissions Trading System (ETS), https://climate.ec.europa.eu/

eu-action/eu-emissions-trading-system-eu-ets_en, under the European Green Deal marks a significant 

step in extending the EU's climate policies to maritime emissions. From 2024 onwards, ships will be 

required to purchase emissions allowances for their CO₂ emissions, creating a financial incentive for 

the industry to adopt cleaner technologies and reduce its carbon footprint. This integration aligns 

maritime operations with broader decarbonisation efforts, encouraging greater efficiency and 

investment in sustainable solutions. 

 

A key element of Regulation (EU) 2015/757 is its focus on the direct measurement of emissions, 

specifically Method D, which requires ships to measure their fuel consumption and CO2 emissions 

using onboard monitoring systems. This method ensures a high degree of accuracy and reliability in 

emissions data, making it essential for compliance with EU regulations. 

 

While Method D offers the advantage of precise, real-time emissions data, it also presents certain 

challenges. The cost of implementing onboard measurement systems can be a burden for shipping 

companies, especially smaller operators. Additionally, the complexity of ensuring consistent, high-

quality data across the fleet can be a constraint. However, the method’s benefits in terms of 
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transparency and accuracy far outweigh the challenges, as it allows for better-informed policymaking 

and more effective emissions reductions. 

 

The objective of this study was to demonstrate that the direct measurement of emissions using exhaust 

gas monitoring systems provides a reliable, accurate, and practical method for quantifying and 

reporting CO2 mass emissions. By utilising real-time exhaust gas analysis, this approach offers a 

viable alternative to traditional estimation methods, ensuring greater transparency and compliance 

with regulatory requirements. 

 

2. Protea’s background 

 

Protea's initial venture into the marine industry began in 2005 with the assessment of exhaust gas 

cleaning system (EGCS) efficiency on the MS Pride of Kent. This pioneering project laid the 

foundation for Protea’s ongoing commitment to improving emissions monitoring and management in 

the maritime sector. Since then, Protea has installed hundreds of exhaust gas analysers onboard 

vessels, primarily for the measurement of SO2, CO2, and their ratio, as specified in the IMO 

Resolution MEPC.340(77) – 2021 Guidelines for Exhaust Gas Cleaning Systems. 

 

As pressure on the maritime industry to monitor and reduce greenhouse gas (GHG) emissions 

continues to grow, Protea has expanded its focus to support these evolving demands. We are actively 

engaged in cutting-edge research and development (R&D) projects, including Carbon Capture and 

Storage (CCS) technologies, to drive innovation in emissions reduction. Additionally, we have part-

nered with SailPlan, whose Vessel Efficiency Data Platforms incorporate mass emissions measure-

ments, providing valuable insights for optimising vessel performance and compliance. 

 

3. Functional description and methodology of the monitoring system 

 

Measuring mass emissions typically involves using an in-situ analyser, and a flowmeter, Fig.1. 

 

 
Fig.1: Overview of Direct Emissions Monitoring System 

 

The P2000 in-situ analyser is installed directly within the exhaust or stack, where it continuously 

measures the concentration of certain pollutants in the gas stream, Fig.2. The in-situ probe of the 

analyser is placed in the process duct, with a sample cell made of sintered panels that allow the gas to 

pass through. A beam of filtered infrared (IR) radiation from the Analyser Unit (AU) passes through 

the cell, reflects off a retro-reflector, and returns to a detector, doubling the path length for absorption. 

Each gas component absorbs IR radiation at specific wavelengths, and the concentration is determined 

by the absorption level measured at the IR detector. 
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Fig.2: Protea 2000 schematic 

 

The atmosFlo flowmeter measures the volumetric flow rate of the exhaust gas in the stack or duct, 

Fig.3. The flowmeter is installed at a point where it can accurately capture the flow profile of the gas. 

It measures the velocity and, combined with the cross-sectional area of the stack, calculates the 

volumetric flow rate of the gas (often in units like cubic meters per second or cubic feet per minute). 

 

 
 

Fig.3: atmosFlo Schematic 

 

4.1. Calculation of mass emission 

 

To determine the mass emissions (for CO2 for example), the concentration measured by the in-situ 

analyser and the flow rate measured by the flowmeter are combined. The key steps are: 

 

1. Obtain the volumetric flow rate from the flowmeter (e.g., m3/hr). 

2. Measure the CO2 concentration (as a percentage) using the in-situ analyser. 

3. Convert the CO2 concentration to mass:, using the molecular weight of CO2 (44 g/mol) and 

the ideal gas law to convert the concentration from ppm or percent to mass per unit volume 

(e.g., kg/m3). 

4. Multiply the flow rate by the CO2 concentration to get the mass flow rate of CO2 (e.g., kg/s or 

tons/hour). 

 

Example formula: CO2 Mass Emission Rate= Flow Rate (m3/hr) × CO2 Concentration (kg/m3) 
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This gives the mass of CO2 emitted per unit time. 

 

4.2. Corrections 

 

The measurements need to be corrected for variations in temperature and pressure to ensure accuracy. 

This is done automatically in the software, as both the P2000 IR and the atmosFlo are equipped with 

integrated PT100 temperature sensors and pressure transducers. These sensors allow the measurement 

data to be corrected to Standard Temperature and Pressure (STP) conditions, ensuring consistency in 

the mass flow calculations. 

 

Standard Temperature and Pressure (STP) are typically defined as: 

 

• Temperature: 0°C (273.15 K) 

• Pressure: 101.325 kPa (1 atm) 

 

The correction factor for gas flow measurements to adjust for non-standard conditions is given by the 

following formula: 

𝑄𝑆𝑇𝑃 =  𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  × (
𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑

𝑃𝑆𝑇𝑃
) × (

𝑇𝑆𝑇𝑃

𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑
) 

 

where: 𝑄𝑆𝑇𝑃 = Corrected flow rate at standard conditions 

𝑄𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = Measured flow rate 

𝑃𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑  = Measured pressure (kPa) 

𝑃𝑆𝑇𝑃 =101.325kPa (standard pressure) 

𝑇𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 = Measured temperature (Kelvin) 

𝑇𝑆𝑇𝑃 =273.15K (standard temperature) 

 

This formula ensures that the measured gas flow is normalized to STP, allowing for consistent and 

comparable emission data across varying environmental conditions. This method provides real-time, 

continuous monitoring of mass emissions, ensuring compliance with environmental regulations and 

facilitating emissions reporting. 

 
4. Comparative Data from Secondary Monitoring Method (Method C) 

 
The first method for comparing CO2 mass emissions using the direct measurement approach involves 

assessing emissions against onboard measured fuel flows. Data from all flow meters connected to 

relevant CO2 emission sources are aggregated to determine total fuel consumption over a specific 

period. This method (Method C) is outlined in Regulation (EU) 2015/757, which governs the 

monitoring of CO₂ emissions from maritime transport. 

 
Method C relies on the measured fuel flows recorded onboard. Data from all Coriolis flowmeters 

associated with relevant CO2 emission sources is aggregated to determine the total fuel consumption 

over a specific period. This aggregated fuel consumption is then used to calculate CO2 emissions 

using the formula: 

 

𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 ×  𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝐹𝑎𝑐𝑡𝑜𝑟 

 

This calculation provides a basis for comparison with the direct measurements obtained by Method D. 
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5.1. Study results 

 

For this study, data was provided by one of our partners, Sailplan, which supplies a marine operations 

and efficiency data platform for vessel operators. The vessel which was used in the study was 

equipped with five main engines, each fitted with Protea’s emission monitoring system. Additionally, 

Coriolis flowmeters were installed on each engine, enabling a direct comparison with Method C. 

 

For the vessel, the emissions factor is based on the fuel type (diesel), which corresponds to 3.206 kg 

CO2/kg fuel, as specified in the 2018 Guidelines on the Method of Calculation of the Attained Energy 

Efficiency Design Index (EEDI) for New Ships, Resolution MEPC.308(73). 

 

 
 

 
Fig.4: Vessel total mass CO2 emissions per day (MT) 

 

Fig.4 illustrates the daily CO2 emissions for the vessel, combining the CO2 emissions from all running 

engines, presented in metric tons per day, comparing both Direct CO2 emissions and Fuel-based 

calculations. This comparison is crucial, as the total daily mass of CO2 emissions is commonly used 

for annual reporting, typically expressed as CO2 emissions per distance or per unit of transport work. 

To calculate the daily CO2 emissions in metric tons from the direct CO2 measurement, the average 

CO2 measurement in kg/hr is applied. 
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𝑇𝑜𝑛𝑠 𝑝𝑒𝑟 𝑑𝑎𝑦 =  (
𝐴𝑣𝑔 𝑘𝑔 𝑝𝑒𝑟 ℎ𝑜𝑢𝑟 

1000
)  ×  24 

 

Fig.5 illustrates the trendline for daily CO2 emissions for the vessel, presented in metric tons per day, 

comparing both Direct CO2 emissions and Fuel-based calculations. The R2 value (0.993) shows an 

excellent correlation between both the direct and fuel-based calculations for daily Mass Emissions of 

CO2 for the 16-day period. 

 

 
Fig.5: Total mass CO2 emissions per day (MT) 

 
The R2 value, or the coefficient of determination, is a statistical measure that indicates how well the 

variation of one variable explains the variation of another. It is commonly used in regression analysis 

to assess the goodness of fit of a model. 

 

Fig.6 illustrates the CO2 mass flow for the vessel, combining the CO2 emissions from all running 

engines, presented in kilograms per hour (15 min average), comparing both direct CO2 emissions and 

fuel-based calculations.  

 

 
Fig.6: CO2 Mass flow comparsion (kg/hr) 
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The scatter plot below illustrates the trendline for CO2 mass flow for the Vessel, presented in 

kilograms per hour, comparing both direct CO2 emissions and fuel-based calculations. The R2 value 

(0.9732) shows an excellent correlation between both the direct and fuel-based calculations for mass 

flow of CO2 for the 16-day period. 

 

 
Fig.7: CO2 mass flow comparison (kg/hr) 

 

5.2. Comparative Data from Third Monitoring Method (load-based calculation) 

 

The third method used for comparison against direct measurement was an engine-load based 

calculation. This approach estimates CO2 emissions based on the real-time engine active power (kw) 

using a line fit equation. The relationship between load and emission rate is derived from the engine 

bed test report specific to the engine's make and model. 

 

 
Fig.8: Total mass CO2 emission per day (MT) 

 

Fig.8 illustrates the daily CO2 emissions for the vessel, combining the CO2 emissions from all running 

engines, presented in metric tons per day, comparing both direct CO2 emissions and load-based 

calculations. The scatter plot below illustrates the trendline for daily CO2 emissions for the vessel, 

presented in metric tons per day, comparing both direct CO₂ emissions and fuel-based calculations. 
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The R2 value (0.9984) shows an excellent correlation between both the direct and Load-based 

calculations for daily Mass Emissions of CO2 for the 16-day period.  

 

Fig.9 illustrates the CO2 mass flow for the vessel, combining the CO2 emissions from all running 

engines, presented in kilograms per hour (15 min average), comparing both direct CO2 emissions and 

load-based calculations. 

 

 
Fig.9: CO2 mass flow comparison (kg/hr) 

 

Fig.10 illustrates the trendline for CO2 mass flow for the vessel, presented in kg/hr, comparing both 

direct CO₂ emissions and load-based calculations. The R2 value (0.9776) shows an excellent 

correlation between both the direct and fuel-based calculations for mass flow of CO2 for the 16-day 

period. 

 

 
Fig.10: CO2 mass flow comparison (kg/hr) 

 

5.3. Evaluation and interpretation of results 

 
Over the 16-day period since the visit to the vessel, the CO2 mass emission data has demonstrated a 

strong correlation (greater than 95%) between the direct method D, the fuel-based calculated ethod C 

and the load-based calculated method. This correlation is observed in both the total daily emissions 

(measured in metric tons per day) and the trended 15-minute averages (measured in kg/hr). 
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Considering that this data represents the combined emissions from all five main engines (excluding 

Engine 3, which was inoperative), the results are robust and significant. 

 
Notably, the direct measurement method recorded a daily average 3.5% lower than fuel-based 

estimates. This suggests that relying on Method C for EU ETS could lead to an overestimation of CO2 

emissions. This may be due to the fact fuel-based estimates assume complete combustion of the 

available hydrocarbons into CO2. The combustion efficiency of a marine diesel engine typically 

ranges from 95% to 98%, Zhou et al. (2022), depending on engine design, operating conditions, and 

fuel quality. While marine diesel engines are highly efficient in converting fuel energy into useful 

work, not all hydrocarbons are fully oxidised to CO2. Some incomplete combustion products, such as 

carbon monoxide (CO), unburned hydrocarbons (HC), and particulate matter (PM), Lapuerta et al. 

(2002), are always present in exhaust emissions. 

 

6. Conclusion 

 

The comparative analysis of CO2 emissions data for the vessel demonstrates a strong alignment 

between the direct measurement method (Method D), the fuel-based calculation method (Method C), 

and the load-based calculation method. Over the 16-day monitoring period, the correlation between 

direct measurements and the calculated methods exceeded 95%, with R2 values of 0.993 for the fuel-

based method and 0.9984 for the load-based method in daily mass emissions (tons per day). These 

high correlation values confirm the reliability of direct measurement for quantifying CO2 emissions. 

 

The results are significant for compliance, performance evaluation, and reporting under frameworks 

such as the Energy Efficiency Design Index (EEDI).  

 

The primary limitation of this study is the relatively short data collection period of 16 days, which 

may not fully capture long-term operational variations, or maintenance-related influences on CO2 

emissions. Additionally, the study is limited to five engines from a single vessel, restricting the 

generalisability of the findings to a broader fleet or different engine configurations. Variability in 

operational profiles, fuel quality, and external environmental factors such as sea state and weather 

conditions could introduce uncertainties that may not be fully accounted for within this dataset. 

Moreover, discrepancies between direct measurements and calculated emissions may arise from 

assumptions and simplifications inherent in the calculation method, including reliance on engine test 

bed data that may not fully reflect real-world performance. Instrumentation accuracy, and potential 

calibration errors in direct measurements also present sources of uncertainty. 

 

The use of direct CO2 measurement via gas analysers offers several advantages over traditional 

calculation-based methods. One of the primary benefits is real-time measurement, allowing for 

immediate data acquisition and analysis without the need for post-processing or estimations based on 

fuel consumption. This enables faster decision-making in emissions monitoring and compliance 

reporting. Additionally, direct emissions monitoring provides a more representative measurement 

when fuel additives or carbon capture abatement equipment are installed, as these technologies can 

alter the relationship between fuel consumption and actual emissions. In such cases, fuel-based 

calculations become obsolete, as they do not account for post-combustion CO2 reductions or changes 

in emission composition. 

 

Additionally, gas analysers can simultaneously measure multiple gases, including carbon monoxide 

(CO), nitrogen oxides (NOx), methane (CH4), and sulphur dioxide (SO2). This multi-gas capability 

provides significant operational and regulatory benefits: 

 

• Methane Slip Monitoring: In dual-fuel and gas engines, unburned methane emissions (me-

thane slip) are a growing concern due to methane’s high global warming potential. Real-time 

CH4 monitoring allows operators to assess and optimise combustion efficiency to minimise 

emissions, ICCT (2020). 
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• Engine Maintenance and Diagnostics: NOx and CO measurements provide valuable insights 

into combustion efficiency and engine health. Increased CO emissions may indicate incom-

plete combustion, while NOx levels can be used to assess engine tuning and compliance with 

IMO Tier III or other regional regulations. 

• Fuel Quality Assessment: SO2 emissions are directly linked to the sulphur content of the fuel 

used. Continuous monitoring of SO2 can help verify compliance with MARPOL Annex VI 

sulphur limits and detect fuel quality issues that may affect engine performance or emissions 

control systems, LR (2023). 

 

By integrating direct measurement technology, vessel operators can enhance emissions reporting 

accuracy, optimise engine performance, and ensure compliance with evolving environmental 

regulations. 
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Abstract 

 

The "Real Vessel Data Challenge" initiative is an effort to establish a benchmark for evaluating 

modeling capabilities among vendors of maritime systems. This workshop challenges participants to 

analyze real-world vessel data, focusing on tasks such as developing baseline models, estimating 

fouling effects, and assessing data quality. By providing standardized datasets and encouraging 

collaborative analysis, the challenge aims to foster innovation and knowledge sharing in the maritime 

industry. The paper outlines the initiative's objectives, structure, expected outcomes, and milestones, 

emphasizing its potential to enhance decision-making tools for shipowners and improve 

methodologies for system vendors. 

 

1. Introduction 

 

Long-term monitoring data has become popular since ISO 19030 was introduced, while even the most 

reluctant shipowners have installed torque meters after ShaPoLi and practically all are collecting data. 

Although the ISO is a good start, there is no clear and agreed procedure on how to post-process the 

data to get meaningful, detailed results which could be transformed into a practical decision-making 

process, especially in realistic conditions when the data do not have ideal quality and/or distribution. 

A lot of companies offer long-term monitoring analysis, but there is a wide variety of challenges (i.e. 

data quality, operational profile, weather effects etc.) and a variety of different needs (i.e. on time hull 

cleaning, predictive maintenance, impact of ESDs, routing, model predictive control etc.), so it is not 

necessarily clear how it can tangibly and measurably help shipowners. However, the post-processing 

of this collected data presents a formidable challenge - one that is not just technical but also 

multifaceted. 

 

Ship performance teams encounter a variety of issues when dealing with long-term monitoring data: 

inconsistencies in quality, gaps in datasets, and diverse analytical needs ranging from predictive 

maintenance to routing decisions. These challenges make it difficult for companies to identify the 

most effective solutions for their specific requirements. Recognizing this gap, the Real Vessel Data 

Challenge emerges as a response. 

 

This workshop offers a platform where participants can analyze standardized datasets derived from 

real vessel operations. The dataset provided includes ISO 19030-compatible data along with ship 

particulars and event labels from a 76000 tdw Bulk Carrier inviting researchers, engineers, and 

analysts to explore various aspects of maritime performance. Participants will be tasked with 

generating baseline models for both clean and current conditions, estimating fouling effects, and 

critically assessing the quality of the collected data. 

 

Beyond its technical objectives, this challenge fosters a collaborative environment that encourages 

knowledge sharing among maritime professionals. By providing a forum for diverse methodologies 

and approaches, it promotes innovation and cross-fertilization of ideas within the industry. The event 

not only addresses current challenges but also paves the way for future advancements in maritime data 

analysis. 

 

2. Workshop Objectives 

 

The workshop is designed as an inclusive forum for maritime professionals, researchers, and analysts 
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from diverse backgrounds to collaborate on pressing challenges in marine data analysis. The 

objectives of this initiative are broad and multifaceted, aiming not only to address specific research 

questions but also to foster a sustainable community of practice. 

 

1. Promote Cross-Disciplinary Collaboration: Bring together experts from various fields such as 

data science, engineering, economics, and policy-making to tackle complex maritime issues 

collectively. 

2. Enhance Research Capacity: Provide researchers with access to unique datasets, and a 

collaborative platform to conduct high-quality studies on maritime sustainability and safety. 

3. Support Open Science Practices: Encourage transparency by sharing datasets, methodologies, 

and results publicly through an online repository, fostering reproducibility and trust among 

participants. 

4. Foster Innovation in Data Analysis: Offer opportunities for participants to explore new 

methods and tools for analyzing marine data, addressing gaps in current methodologies. 

5. Encourage Peer Learning and Networking: Create a space for knowledge exchange where 

professionals can share their expertise, learn from others' experiences, and build valuable 

professional networks. 

6. Contribute to Policy Development: Use insights gained from the analysis to inform policy 

decisions related to maritime safety, environmental regulations, and sustainable practices. 

7. Recognize Excellence in Research: Highlight outstanding contributions through awards or 

recognitions, motivating participants to produce high-quality work. 

8. Ensure Ethical Data Usage: Establish clear guidelines for data use to protect confidentiality 

and ensure responsible sharing among participants. 

9. Provide Accessible Resources: Compile a repository of datasets, tools, and detailed analysis 

reports accessible to future projects, serving as an enduring resource for the field. 

10. Encourage Continuous Improvement: Gather feedback post-event to refine subsequent 

iterations, ensuring each challenge builds on previous successes and lessons learned. 

11. Align with Global Initiatives: Integrate findings into broader global efforts in marine con-

servation and sustainability, contributing to a larger movement towards responsible maritime 

practices. 

12. Facilitate Open Dialogue on Challenges: Create a space for open discussions on encountered 

obstacles, fostering collective problem-solving and identifying areas needing improvement in 

methodologies. 

13. Ensure Long-Term Accessibility: Archive all materials on a dedicated website for ongoing 

accessibility and utility post-event. 

14. Encourage Feedback for Improvement: Continuously seek participant feedback to enhance 

the challenge's design and outcomes, ensuring each iteration is better than the last. 

 

By encompassing these objectives, the workshop aims not only to address current challenges in 

marine data analysis but also to build a lasting community committed to advancing maritime research 

and sustainability. 

 

3. Challenge Details 

 

For the first installment of this challenge, the choice was made to test the modeling capabilities of the 

participants for one vessel with relatively good quality of data. More challenging data, and/or more 

diverse sources that would test the generalization capabilities, will be discussed in future workshops, 

after evaluation of “simple” capabilities is clarified and established. 

 

Real time (per minute) data of approximately one year will be shared in the form of a csv file. These 

data will include the following metrics: Draft, Trim, Speed (GPS and Log), Power, RPM, Torque, 

Turbocharger RPM, Fuel Consumption, and weather data. Along with these data, Daily (noon Report) 

data will be shared, while ship particulars and sea trials and shop test data will also be shared after 

anonymization. Cleaning events will also be shared. Based on these data the participants will be 

required to: 
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1. Generate baseline models for the vessel in clean condition and current condition: Participants 

will utilize the datasets provided, to create two baseline models: one representing the vessel in 

its clean condition and another reflecting its current (latest) operational state. The resulting 

models will be expressed in the form of Speed-Power Curves, for different drafts, in a prede-

fined (template) format, which will be shared for ease of comparison. 

2. Estimate fouling effects in terms of added power and/or speed loss: This involves analyzing 

how fouling accumulates by assessing the increase in resistance or required power to maintain 

speed, as well as any potential speed loss. These estimates will be delivered as extra columns 

to the dataset given 

3. Simulate current conditions: Provide estimates of Power and/or Consumption, for periods 

when these data are missing, when possible. 

4. Methodology Comparison: The challenge provides a platform for comparing different model-

ing approaches, allowing participants to showcase their tools and methodologies effectively. 

Participants will be allowed to make multiple entries, if they desire, to showcase the capabili-

ties and particularities of different methods / algorithms. 

5. Optionally attempt to distinguish hull from propeller fouling: Participants may explore differ-

entiating between fouling effects on the hull and those on the propeller. This optional task 

adds depth by pushing the methodologies to attempt differentiating between contributors us-

ing latent effects. 

6. Produce data quality/uncertainty reports: This requires evaluating the consistency, cleanliness, 

and completeness of the provided data. Participants must identify any gaps or anomalies and 

quantify uncertainties inherent in their models. Clear documentation here ensures transparen-

cy and trust in the analysis results. 

7. Open Discussion: Where the participants will be able to comment and/or showcase deeper in-

sights they are willing to share. 

 

By addressing these tasks, participants will share insights into how operational conditions evolve over 

time and the effectiveness of various mitigation strategies for fouling-related performance issues.  

 

4. Evaluation Criteria / Scoring 

 

To ensure fairness and comparability, the following measurable criteria will be used: 

 

1. Accuracy: Measured using Mean Absolute Percentage Error (MAPE) compared against an 

undisclosed baseline model generated through Computational Fluid Dynamics (CFD), 

calibrated using towing tank report. 

2. Trend Consistency: Assessed by evaluating how well models maintain consistency over time, 

particularly during periods of operational changes or environmental variability.  

3. Robustness: Tested by exposing models to data quality issues such as outliers and missing 

values, assessing their ability to provide reliable insights. 

 

Participants will also be encouraged to propose alternative metrics for evaluation during the workshop 

discussions, ensuring that the challenge remains a dynamic platform for continuous improvement. 

 

5. Milestones Description 

 

Release of Data (May 2025): 

 

• The dataset comprising high-frequency measurements from a 76,000 DWT bulk carrier over a 

year will be made available to participants via a secure online platform or physical media. 

(TBA) 

• Participants are expected to download the dataset and begin preprocessing it for analysis. 
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Submission Deadline for Analyses and Reports (December 2025): 

 

• Participants will have from May 2025 until December 2025 to analyze the provided data and 

submit their findings. This period allows ample time for thorough analysis, model 

development, and reporting. 

• Submissions are expected in a standardized format to ensure consistency across participants 

and easy comparison. 

 

Compiling Workshop Results (February 2026): 

 

• After the submission deadline, all received analyses and reports will be reviewed and 

compiled into a comprehensive report by an independent panel of experts (TBD).  

• This compilation will summarize key findings, evaluate methodologies used, assess data 

quality and uncertainty metrics, and provide actionable insights for stakeholders in the 

maritime industry. 

 

Workshop Presentation (March 2026): 

 

• A workshop will be held in the next HullPIC to present the compiled results and discuss with 

participants and guests. 

• This event will foster collaboration and provide a platform for open discussion on challenges 

faced during data analysis, potential improvements in methodologies, and future directions. 

 

Publication of Final Report (April 2026): 

 

• The final report will be published online, accessible to all registered participants and industry 

stakeholders. It will serve as a benchmark document highlighting the achievements of the 

challenge. 

• Based on the level of interest, discussion and outcomes of this first challenge, the next 

challenges will be defined. 

 

4. Considerations 

 

• Feedback Incorporation: Workshops' feedback will be used to enhance the challenge's 

effectiveness, ensuring continuous improvement in future iterations. At least one meeting will 

be arranged, to openly discuss issues or concerns before the submission of analyses. 

• Participant Diversity: In order to attract a diverse range of participants from various 

backgrounds and expertise levels, which will enrich discussions and lead to comprehensive 

insights, participation and access to the datasets and results will be kept free and open. 

• Evaluation Criteria: Clear criteria for evaluating models and reports will ensure fair 

assessment based on consistent standards. An open forum for the discussion and establish-

ment of fair and unbiased criteria will be established and kept open to all. 

• Communication Channels: Establishing forums or discussion boards will facilitate collabo-

ration, allowing participants to share ideas and seek clarification throughout the challenge 

period. The specific platform(s) (i.e. website, discord server etc.) will be announced soon. 
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Abstract 

 

The successful development of speed/power trial methodology in the Sea Trials Analysis Joint Industry 

Project (STA JIP) in 2004 - 2006 led to adaptation in ITTC, IMO and ISO standards. As such the much-

needed harmonisation of the methodology was achieved within the industry. This paper offers the 

background of the speed/power trial standard, treats the current state of affairs and presents the future 

work planned in the follow-up project: STA-2 JIP. The aim of this project is to achieve a more accurate 

and reliable determination of the actual, full-scale speed/power performance of ships, both from speed 

trials and in-service measurements. Thereto, the project aims to improve the current protocol for 

speed/power trials and secondly to develop an in-service performance protocol. Within the project, 

uncertainties associated with in-service performance will be charted, offering a starting point for 

defining the project’s priorities. Improvements and new developments of different correction methods 

are foreseen, as well as the development of a new in-service test protocol. 

 

1. Introduction 

 

The determination of in-service performance of ships continues to be an important aspect, both in 

acceptance of newbuilds as well as in evaluating existing operations. Prior to each ship’s delivery, 

speed/power trials are conducted to verify contractual agreements on performance between the owner 

and the yard, as well as to verify compliance to IMO MEPC EEDI regulations. While the performance 

is to be evaluated in ideal conditions (no wind, waves or current, etc.), trials are often done in non-ideal 

conditions due to time constrains. Corrections for the effect of wind, waves, current and other effects 

are therefore needed to arrive at the performance level in ideal conditions.  

 

Once the vessel enters service, its speed, power, fuel consumption, etc. are nowadays often logged by 

a performance monitoring system and used for reporting total consumption levels. Also here, it is of 

interest to evaluate not only total consumption, but to zoom in on the power requirement of the ship in 

different operational scenarios and compare them to predictions made before. This promises to offer 

validation of prediction techniques and could lead to improved understanding of phenomena at play in 

real operational conditions. This comes with its own challenges however. While one can choose to only 

select voyage segments with very benign weather conditions—getting rid of the associated uncertainties 

of weather effects on the performance—the main remaining uncertainty is the speed through water.  

 

While during a speed/power trial reciprocal runs are performed to obtain the speed through water to an 

acceptable accuracy, no owner is willing to spend half a day on a commercial voyage to perform such 

runs. So, while a lot of challenges are similar in trials and operations, the operational constraints add a 

specific challenge in obtaining the speed through water during normal commercial operations. 

 

2. Past & present of speed/power trials 

 

In the past, many different speed/power trial protocols were developed. For instance: Taniguchi-Tamura 

(1966), BSRA (1964,1978), Jinnaka (1982), SNAME (1989), Schmiechen (1991), Kracht (1999). In 

2002 ISO published the first edition of ISO15016, using analysis method based on the propeller open 

water diagram and a wide choice of wave added resistance correction methods. The experience with 

this (and previous) method were adverse, as analysed performance levels were often not confirmed in 

operation.  

 

Identifying the need for improvement, MARIN, together with industry partners, initiated the Sea Trial 

Analysis Joint Industry Project (STA-JIP) in 2004 with the objective of developing reliable, practical 
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and transparent guidelines for analysing speed/power trials. Both the trial procedures and methods for 

analysis were on the agenda for improvement. Work was done by extensive tank and wind tunnel testing 

and CFD to improve the corrections for wind, wave and shallow water, as well as the Direct Power 

Method to translate everything in corrections on power. Further, focus was given on the issue of 

translating ballast draught results to (contract) design draught performance. 

 

With the STA Recommended Practice for Speed Trials published in 2006 as international industry 

standard. After thorough review the ITTC adopted the methodology in their 2012 recommended 

procedures and guidelines. These and the later 2014 version were adopted by MEPC for EEDI.  

 

Meanwhile, the ISO revised their ISO15016 to also follow the same methodology. Both STA-Group 

and ITTC participated in the ISO Working Group to contribute available methods and validation data. 

The ‘iterative method’ was introduced next to the existing ‘Mean of Means’ method to eliminate the 

effect of current. In 2015 MEPC adopted the ISO15016:2015 for EEDI. Meanwhile, the STA-Group 

had developed and released STAIMO software as freeware (https://staimo.com). This software is still 

maintained and available for use by yards, owners, trial specialists and verifiers worldwide. 

 

Over the last decade since, incremental progress has been made by both the ITTC and ISO working 

groups. The SNNM method, Liu and Papanikolaou (2020), for correction of waves was validated by 

the ITTC. The Raven Shallow Water Method, Raven (2022), replaced the Lackenby method, Lackenby 

(1963). The boundary layer exponent of 1/9 is adopted for height conversions of true wind. The 

ISO15016 was updated in 2025, after a three-year revision process conducted by TC8/SC6/WG17 

comprising more than 40 international experts. The update includes endorsements for modern 

measurement techniques (wave buoy, wind LiDAR, ultrasonic anemometers) as high-fidelity inputs 

needed for the updated correction methods. 

 

Although steady progress is shown the last decade, the working groups and committees do not have the 

possibility to conduct new research, merely review the status quo in literature. Furthermore, it is 

recognised that there exists room for improvement in bringing today’s methods to a higher standard 

using the present-day knowledge. 

 

3. Proposed project: STA-2 

 

With the above observations, MARIN is taking the initiative to start a new phase of research in the field 

of full-scale ship performance and proposes the STA-2 JIP. The overall objective of the proposed 

project is to: 

 

Aim for more accurate and reliable determination of the actual, 

full-scale speed/power performance of ships, both from 

speed/power trials and in-service performance measurements. 

 

Thereto, the project will aim at the following objectives: 

 

• Determine uncertainty of the current standard for contract speed/power trials, and if beyond 

target uncertainty, reduce uncertainty by focusing on the items which contribute most to the 

uncertainty  

• Evaluate state-of-the-art measurement techniques, including drafting guidelines and best-prac-

tices for electrical power measurements for cases where mechanical power measurement is not 

possible 

• Develop accurate, reliable and easy to use correction methods for wind, waves and current  

• Update and improve the contract speed/power trial protocol  

• Develop an in-service performance test protocol 

• Validate the above developments in measurement techniques, correction methods and test pro-

tocols by conducting dedicated high-fidelity test campaigns 
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• Deliver free software for the analysis of contract speed/power trials 

• Actively promote and support adaptation of new protocols by ISO, IMO and ITTC 

 

The project will work on both improving the method for contract speed/power trials and developing an 

in-service test protocol for evaluating the performance of ships operating with cargo on a schedule. 

Both approaches share correction methods that will be updated within the project as well, Fig.1. 

 

 
Fig.1: Project scope for both contract and in-service protocol and their shared correction methods, 

leading to two test protocols 

 

The project will be divided into the following five work packages: 

 

WP1 Aspects of uncertainty 

WP2 Measurement techniques and test protocols  

WP3 Correction methods 

WP4 Validation trial campaigns 

WP5 Procedures, implementation & dissemination  

 

The following sections discuss each work package. 

 

3.1. WP1 - Aspects of uncertainty 

 

Within the first work package of the project the components contributing to the uncertainty in 

speed/power trials and in-service performance test results will be identified. From there, priority can be 

given to the aspects that contribute most to the uncertainty. Te results of this work will give input and 

priorities for the other work packages. In addition, a feasibility study will be performed to include 

(standardised) uncertainty analysis in the contract and in-service protocols. 
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Fig.2: Example of uncertainty in a speed-power trial result 

 

3.2. WP2 - Measurement techniques and test protocols  

 

Besides measuring the correct things at high precision and correcting results to ideal conditions as best 

we can, the way we conduct any tests contributes greatly to the accuracy and usefulness of the results. 

Sometimes, trials that were not conducted correctly provided unusable results. For instance, above 

weather limits, no proper steady-states were achieved before staring a measurement run, high current 

fluctuations, local effects within the runs, etc. 

 

Contract trials protocol 

For contract trials, it is important to have a practical protocol that is both easy to carry out correctly and 

well-described so as to not contain ambiguities. The protocol will be further developed with clearer 

descriptions and less ambiguities. Where possible, definitions will be developed on matters such as: 

 

• when the vessel achieves steady state,  

• guidance on lengths of approach runs,  

• how to measure and calculate the ship’s loading condition, 

• which heading to choose for the runs (wind, wave). 

 

Furthermore, we expect to investigate the requirement to return to track in a reciprocal run, and if 

possible, arrive at a set of requirements under which one can sail in opposite heading without returning 

to track, Fig.3.  

 

 
Fig.3: Reciprocal runs: using Williamson turns (upper) or simple 'paperclip' track (lower) 
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In-service performance protocol 

To be able to derive a good baseline performance from an in-service measurement, care needs to be 

taken to limit uncertainties on the results arising from both weather conditions and measurement 

accuracy. While taking into account that the ship’s schedule is not affected by performing dedicated 

tests.  

 

Besides influences from weather, we can identify the ship’s speed through water (STW) as one of the 

dominant contributors to the uncertainty. Although Doppler or electromagnetic speed logs are fitted for 

this purpose, it has been observed they are too unreliable for the purpose of evaluating a vessel’s 

speed/power performance, Hasselaar (2012).  

 

To overcome this shortcoming in available measurement techniques, a test protocol will be developed 

from which the vessel’s STW can be derived in a similar fashion as by reciprocal runs, but without the 

need to hamper the schedule by performing a return run. The proposed protocol uses steady runs at 

heading deviations much smaller than 180°, resulting in a zig-zag patterned track, Fig.4, from which 

the current vector, and consequently STW, can be derived by vector calculus. The expectation for this 

protocol is that it will only yield usable results in very favourable weather conditions, thus needing 

more restrictive requirements on limiting wind speed and wave height. Within this WP, supported by 

WP4’s validation campaigns, the conditions and limits for application will be developed.  

 

The final deliverable for this task will be a written protocol with which ship operators can instruct their 

crews to incorporate these tests in their transits to allow regular testing of their ship’s in-service 

performance.  

 

 
Fig.4: Proposed in-service protocol using a zig-zag pattern 

 

Measurement techniques 

Where possible and deemed promising, tasks on evaluating the effectiveness and accuracy of 

measurement techniques will be carried out. Comparisons of new technology to old, or high-fidelity to 

low-fidelity approaches can be made by incorporating multiple measurement techniques in the 

validation campaigns of WP4. 

 

Electrical power measurements 

It is expected that future propulsion arrangements will incorporate more ‘integrated propulsion systems’ 

such as thrusters and pods where access to a driving shaft for mechanical power measurement by strain 

gauge system is limited or impossible/impractical. For such cases, one needs to rely on other means of 

obtaining the propulsion power, such as electrical power measurements. Experience has shown however 

that this often does not align well with the actual mechanical power output to the propeller. This issue 

needs addressing to make the protocol future proof.  

 

It is foreseen that this task will deliver guidelines/best-practices on where and how to measure electrical 

power to a propulsor. 

 

3.3. WP3 - Correction methods 

 

In this work package, the correction methods will be evaluated and improved, depending on the 

priorities coming from WP1. 

 

Wind 

Together with waves, the effect of wind is typically one of the bigger corrections to arrive at ideal 
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conditions. Given that the relative (apparent) wind speed and direction are properly measured (WP2), 

the correction for wind consists of: 

 

• Wind averaging 

• Correction for the position of the anemometer 

• Calculation of wind added resistance using wind coefficients 

 

For each of the three steps, there is potential for improvement. The need for wind averaging can be 

mitigated once we can arrive at undisturbed measurement location or technique. Regarding the height 

correction, in the current standard, ISO15016:2025, a 1/9th profile is used. However, recent research 

from both on board and stationary wind profile measurements over sea suggests much steeper profiles, 

Dhomé (2020), Hasager et al. (2013). This needs to be evaluated for the case of speed/power trial 

situations.  

 

Waves 

As wind, waves is often one of the dominant corrections. Within ISO15016:2025 the following three 

correction methods are allowed: transfer functions from model tests, SNNM and STAWAVE-1, Grin 

(2014). From several studies it is shown that all three methods have their own pros and cons. The 

starting point within this task is to evaluate the presently available approaches for a wide range of ship 

types and identify shortcomings and areas for improvement.  

 

In trial conditions, the wavelength is typically short when compared to the ship length. It is therefore 

important to have an accurate prediction in these conditions. It has already been identified that some of 

the methods do not perform well in the short-wave region. The left plot in Figure 6 shows an example 

for the KVLCC2, a 320 m tanker. In 2023 MARIN performed model tests for the ITTC benchmark 

study (results to be published) in which four test setups were evaluated (grey lines in left-hand plot). 

When compared to three empirical methods it is shown that results vary considerably. The right-hand 

plot shows the empirical methods in ballast condition (no test results available).  

 

 
Fig.5: Transfer function of wave added resistance for the KVLCC2 at design draught in head waves 

(left plot) and KVLCC2 at ballast draft (right plot) 

 

Within this task, a new (semi-)empirical method will be developed that gives a good prediction in both 

long and short waves, for all wave directions, and for all displacement type hull shapes. The method 

should be robust, easy to implement and use, and require as few as possible and readily available input 

parameters. This task can be a joint effort with interested participants. 

 

The method will be validated with available datasets within MARIN and with limited seakeeping model 

tests, focusing on short waves and for conditions and ship types in which the dataset is not conclusive. 

Within the basic scope there is probably sufficient budget to perform tests for two ship types. 

Furthermore, universities and other institutes will be invited to validate the method with their own 

dataset, in order to avoid bias and ensure industry wide acceptance. 
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In the current standard (ISO15016:2025) numerical approaches like CFD are not allowed for wave 

correction in the ISO procedure, contrary to for instance the wind correction. A feasibility study will be 

performed if it is possible include this option in future protocols. This includes recommendations for 

verification and validation of these methods and a blind benchmark. 

 

Current 

To arrive at the needed STW from the measured speed over ground by GNSS instruments, the speed 

trial method uses the double run protocol to obtain the current component in the ship’s heading 

direction. To derive the current component in the ship’s direction from this, either the mean of means 

(MoM) method using sets of four runs per propeller setting or the iterative method can be used. The 

latter was introduced to enable users to use fewer runs while getting an acceptable result.  

 

In the present standard, the method for iterative current correction can be used with fewer datapoints 

than strictly necessary, resulting in an underdetermined system of equations. This has raised concerns 

about the soundness of the method, and will be investigated. If needed, an improved method will be 

developed. 

 

For obtaining the STW for in-service performance evaluation, the zig-zag run protocol will be 

developed as described in WP2. 

 

3.4. WP4 - Validation trial campaigns 

 

This work package aims to support the above WP2 and WP3 by carrying out dedicated measurement 

campaigns on a number of vessels in different scenarios. Ship owners and operators within the project 

are encouraged to facilitate measurement campaigns on their vessels within this work package.  

 

Validation campaigns are aimed to employ high-fidelity approaches: e.g. using state-of-the-art 

equipment such as wind LiDAR, wave radar and wave buoys (as well as visual wave observations), 

anemometers, etc. This way, the resulting data will be of high fidelity as well as offer a verification of 

lower-fidelity approaches and equipment. Specific to STW validation (in-service protocol, revised 

iterative method), in-situ high-fidelity current measurements by stationary current measurements are 

foreseen.  

 

The above-described approach deliberately exceeds the practicality constraints of the target protocols, 

such that the aimed pragmatic approach of the protocols can be tested. Stated differently: “Will the 

simple zig-zag protocol deliver STW to sufficient accuracy?” can only be answered when a high-fidelity 

ground-truth is available for STW or current. 

 

3.5. WP5 - Procedures, implementation & dissemination 

 

Procedures 

For the contract trials, an updated trial protocol will be written to incorporate all the project’s findings. 

The goal is to arrive at a clearly written, pragmatic procedure. 

 

For the in-service protocol, the new approach will be written to be fit for implementation with on board 

crew.  

 

Update trial software (STAIMO) 

The current STAIMO software for the analysis of speed/power trials will be modernized and brought 

into line with the updated trial standard. 

 

Dissemination & adaptation (ITTC, IMO, ISO) 

Publications of our progress and findings will be made where deemed effective to inform industry and 

regulators and facilitate the adaptation of the project’s recommendations.  
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Furthermore, liaison with ITTC, IMO and ISO will be pro-actively undertaken to ensure the project’s 

work is known and reviewed within these bodies, and considered within their future updates of 

recommendations, procedures, and standards. 

 

3.6. JIP participation 

 

The project initiative has received strong interest from many organisations in the maritime industry 

worldwide, like ship owners, ship operators, shipyards, research institutes and classification societies.  

 

The work is conducted as a Joint Industry Project (JIP), executed by MARIN. Results and costs are 

shared with participating organisations. Participants gain exclusive access to project results, software, 

and other resources through a confidential project website. All findings remain confidential for three 

years after completion, with any publications communicated in advance to all participants. 

 

The advantages for all participants are to participate in large scale R&D with leverage on costs. All 

participants could be actively involved in the definition of the final scope of work and learn from the 

experiences of other participants. The project is currently open to interested parties. For more 

information or to sign up, please contact the authors at STA-2@marin.nl or visit MARIN’s JIP page. 

 

4. Conclusions 

 

The evolution of speed/power trial methodologies through the Sea Trials Analysis Joint Industry Project 

(STA JIP) has led to significant advancements in standardization, shaping international guidelines such 

as those of ITTC, IMO, and ISO. While considerable progress has been made, challenges remain in 

further refining the accuracy and reliability of speed/power performance evaluations, both during 

contract trials and for in-service performance. 

 

The proposed STA-2 JIP aims to address these challenges by improving existing the trial protocol, 

developing a standardized in-service performance evaluation method, and enhancing correction 

techniques for environmental influences. By leveraging state-of-the-art measurement technologies and 

conducting high-fidelity validation campaigns, the project seeks to reduce uncertainties and ensure 

practical, implementable solutions for ship operators, yards, and regulators. 

 

Collaboration through this Joint Industry Project offers an opportunity for stakeholders to contribute to 

and benefit from cutting-edge research, leading to more precise and efficient performance assessments. 

Ultimately, the advancements from STA-2 JIP will strengthen the industry's ability to evaluate ship 

efficiency under real-world conditions, supporting sustainability goals and regulatory compliance. 
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Abstract 

 

Recent advances in AI and availability of a ship’s operational data makes AI based models to be used 

in ship performance analysis. Continuing from using DNN (Deep Neural Network) model to predict a 

ship’s performance, this paper presents a study on using DNN model to predict the effects of hull 

cleaning on a ship’s performance. Using operational measurement data during an extended period of 

operation including multiple hull cleaning, a DNN model is developed to predict fuel consumption of a 

ship from input variables consisting of ship’s speed, external weather condition, number of hull 

cleanings performed since last drydocking and total anchoring period. The model is applied to ship 

operation data and the results show possibility for using the model for deciding optimal hull cleaning 

period.  

 

1. Introduction 

 

Ship operators and owners face difficult situations today from regulatory requirements for preventing 

greenhouse gases and environmental protection. Current regulations such as CII (Carbon Intensity 

Index) and FuelEU Maritime require ship operators to meet certain criteria for CO2 emission, which 

can be met usually by increasing ship operational efficiency and reducing fuel consumption, unless 

using alternative fuels. 

 

Hull cleaning has been frequently used and well known to increase ship operational efficiency but there 

has not been enough study to predict quantitative gain from hull cleaning. If decrease in fuel 

consumption by increased hull efficiency from hull cleaning can be quantitively predicted with a certain 

accuracy, it will be possible to perform cost benefit analysis on hull cleaning and decide optimal hull 

cleaning period. 

 

In this study, DNN-based FOC prediction model is applied to predict fuel consumption after hull 

cleaning. First, DNN-based FOC prediction model is trained using ship operational data. Then 

performance degradation during operation and fuel consumption after hull cleaning is predicted with 

the trained model.  

 

2. DNN-based FOC prediction model 

 

A DNN architecture is used to develop an FOC prediction model. DNNs have been actively used in 

many studies because they can automatically extract representative features without generating complex 

handcrafted features, which typically require a considerable amount of expert knowledge, Tarelko and 

Rudzki (2020), Anh Tran (2021), Zou et al. (2022). Consecutive nonlinear calculations of the DNN by 

stacking several hidden layers allow large and complex problems to be solved, Uzair and Jamil (2020). 

 

The architecture of the FOC prediction model is shown in Fig.1. The DNN architecture comprises of 

an input layer, three hidden layers, and an output layer. The layers comprise of several nodes connected 

with weights to be summed in each node using a nonlinear function, ReLU (Rectified Linear Unit), 
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Agarap (2018). The last hidden layer is connected to the input layer via a shortcut connection, He et al. 

(2015), where the inputs are summed to the outputs of the last hidden layer during model training. This 

allows the model to be optimized more easily as only the residual information, excluding the original 

information added by the connection, is to be learned. 

 

 
Fig.1: Architecture of DNN-based FOC prediction model 

 

Detailed description of the model and how it was trained ship operation data is already discussed already 

in Park et al. (2024). 

 

3. Performance degradation prediction 

 

3.1. Prediction model 

 

In order to predict performance degradation, a new feature called CAE (Cumulative Anchoring Effect) 

is developed, based on the well-known assumption that the degradation of performance due to hull 

fouling is significantly affected by the length of the anchoring and the water temperature of the 

anchorage site. 

 

 𝐶𝐴𝐸𝑛 = (𝑛𝑜. 𝑜𝑓 𝑎𝑛𝑐ℎ𝑜𝑟𝑖𝑛𝑔 𝑑𝑎𝑦𝑠)𝑛 × (𝑤𝑎𝑡𝑒𝑟 𝑡𝑒𝑚𝑝. 𝑜𝑓 𝑎𝑛𝑐ℎ𝑜𝑟𝑖𝑛𝑔 𝑠𝑖𝑡𝑒)𝑛,  (1) 

 where n represent n-th anchoring. 

 

The amount of performance degradation is then estimated as the difference between the predicted FOCs 

obtained using the input data with the original CAE and initial CAE, as shown in Fig. 2. The FOC 

prediction model, F, predicts the FOCs in the k-th journey leg, 𝑦̂𝑘, using the input features 𝑋̅𝑘 including 

the CAE, which is denoted as A. If the CAE is changed to 0, which implies that the state of the ship 

returns to the past when no anchoring effects are accumulated, then the prediction model F generates a 

lower FOC, 𝑦̂𝑘
′ . The percent decrease in the predicted FOCs is quantified as the amount of performance 

degradation of the k-th journey leg. 

 

 
Fig.2: Estimation of ship performance degradation 
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3.2. Prediction results 

 

Details of prediction results using the prediction model in 3.1 is already discussed in Park et al. (2024). 

Fig.3 summarizes prediction results. Green trend lines indicate estimated ship operation performance 

degradation (SOPD), the blue line indicate actual performance degradation. While the trend lines follow 

general trends, it is not accurate enough to predict performance degradation of each leg of the journey. 

 

 
Fig.3: Estimated performance degradations at each journey leg  

 

4. Hull cleaning effects prediction 

 

4.1. Prediction model 

 

For predicting hull cleaning effects, similar concept and performance degradation is applied. Since CAE 

represents performance degradation from new hull condition, hull cleaning will decrease CAE value. 

In this study, it is assumed that hull cleaning will have the effect of resetting the value of CAE to 0, 

meaning that the hull will return to the condition after drydocking.  

 

4.2. Prediction results 

 

The hull cleaning prediction is applied to the operational data of the same ships which is used for 

performance prediction and degradation as in chapters 2 and 3. Table I summarizes prediction results.  

Table I: Hull cleaning prediction results 

Vessel Vessel type Hull cleaning type 
Hull cleaning 

effects 

Average hull 

cleaning effects 

A Bulk carrier 
Propeller polishing 3.84% 

3.76% 
Propeller polishing 3.67% 

B Tanker Hull cleaning and Propeller polishing 1.35% 1.35% 

C Container 
Propeller polishing 10.96% 

11.18% 
Propeller polishing 11.39% 

 

While the prediction results for the same ship are consistent, results between different ships are 

inconsistent. Therefore, prediction results are only reliable for the same ship, which data is used for the 

training, and it is difficult to predict general hull cleaning effects. Also, since it is not possible to 

measure exact performance gain from hull cleaning, validation of the prediction results is difficult.  

 

5. Conclusions 

 

In this study, DNN based performance prediction model is used to predict performance degradation and 

hull cleaning effects prediction. While the proposed model has potential for the application of 
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performance prediction, performance degradation prediction and hull cleaning effects prediction, there 

is not yet enough validation to be used for ship operators. 

 

More study will continue for the validation of prediction results, as well as introducing a factor to the 

degree of hull cleaning, such that the hull cleaning is not always assumed to return hull condition to 

after drydocking. 

 

If performance degradation and hull cleaning effects prediction is able to be validated, it will be easily 

used for cost benefit analysis to decide optimal period for hull cleaning.  
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Abstract 

 

Installing sails onboard of cargo vessels is one of the tools within the decarbonisation toolbox. 

Whether a classic wing-sail or a Flettner rotor, the installed sail generates thrust by harvesting the 

energy of the wind. Sounds simple! However, the thrust the sail generates comes at a cost, and not 

just the cost of installing and operating the device: it also generates a transversal force, which the 

vessel needs to counteract. She does so by generating an opposite hydrodynamic transversal force, 

which in turn comes at its own cost: induced resistance of the hull. This paper deals with the details of 

the induced hull resistance due to sail action, and how it affects the efficiency of wind-assisted 

propulsion. 

 

1.  Introduction 

 

The basic principle of wind-assisted propulsion is simple: the sail converts wind energy into a useful 

thrust force. The thrust force assists the propeller in maintaining the speed of the vessel, lowering its 

output and required engine power. This is entirely true only in one special case: when the vessel sails 

dead downwind (provided that wind speed is higher than ship speed). If there is an angle between 

heading and wind, it becomes more complicated. Sailing dead upwind is also simple: the sail in that 

case cannot produce any useful thrust and is giving resistance instead. Since these two special cases 

are not of particular interest, it might be important to understand the details of a more realistic case. 

 

When the vessel sails at an oblique angle relative to the wind, transversal forces are generated by the 

sail. These forces need to be opposed, or otherwise the vessel would drift. The counteracting force 

comes from the hull and appendages, but it comes at a cost. To produce a hydrodynamic side force, 

the hull induces additional drag. Adding to this, both the sails, and the hull, produce yaw moments 

acting on the vessel. In general, these moments will not be in equilibrium, which would mean that the 

vessel is unable to maintain course. That is what the rudder is for! But again, deflecting the rudder to 

compensate for the yam moment induces additional drag. In short, there is a cascade of effects caused 

by wind propulsion that induces additional drag which is not trivial to predict. The hydrodynamic 

transversal forces and moments of the hull are highly dependent on the hull shape. 

 

In this paper we will look at the balance of aerodynamic and hydrodynamic forces at play, acting on a 

ship that sails in beam wind. The subject is a 230 m bulk carrier with a typical design. More details on 

this study can be found in Tomljenović (2023), Tomljenović et al. (2024). 

 

2. How does sail-assisted propulsion work: simple (incorrect) version  

 

Usually, when thinking about sail-assisted propulsion, we imagine a situation shown in the sketch in 

Fig.1. The force 𝐹𝑥𝑆𝑎𝑖𝑙 generated by the sail, helps propel the vessel forward, and together with 

propeller thrust 𝑇 compensates for the hydrodynamic resistance of the hull 𝐹𝑥𝐻𝑢𝑙𝑙. This, however, is 

an incomplete and misleading representation of wind-assisted propulsion. 

 

 
Fig.1: Sail-assisted propulsion: simple version 
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3. How does it actually work: understanding the forces and moments acting on the hull 

 

In reality, the full story is a bit more complex, and here are important details that need to be 

considered. Fig.2 shows a sketch of the different moments and forces acting on a hull during wind-

assisted sailing in beam winds. The orientation of vectors and the moments in the sketch are realistic. 

For example, hydrodynamic moment of the hull 𝑀𝑧 𝐻𝑢𝑙𝑙, is working in the direction of increasing the 

drift angle. This is characteristic of full hulls such as bulk carriers. Table I shows the description of all 

symbols shown in the figure. 

 
Fig.2: Moments and forces acting on the hull, the rudder and the sail 

 

Table I: Nomenclature 

𝐶𝑂𝐺 Centre of gravity of the vessel 

𝐹𝑥  𝐻𝑢𝑙𝑙 Hydrodynamic resistance force acting on the hull in its longitudinal X direction 

𝐹𝑦 𝐻𝑢𝑙𝑙 Hydrodynamic sway force acting on the hull in its transversal Y direction 

𝐹𝑡𝐻𝑢𝑙𝑙 Total resistance of the hull, calculated as a vector sum of the 𝐹𝑥 and 𝐹𝑧 components. 

𝑀𝑧 𝐻𝑢𝑙𝑙 Hydrodynamic yaw moment acting around the hull’s COG around the vertical Z axis  

𝐹𝑥  𝑅𝑢𝑑𝑑𝑒𝑟 Hydrodynamic resistance force acting on the rudder in longitudinal X direction 

𝐹𝑦 𝑅𝑢𝑑𝑑𝑒𝑟 Hydrodynamic sway force acting on the rudder in transversal Y direction 

𝑟𝑟𝑢𝑑𝑑𝑒𝑟 Arm between the rudder and COG 

𝐹𝑥  𝑆𝑎𝑖𝑙 Aerodynamic resistance force acting on the sail in longitudinal X direction 

𝐹𝑦 𝑆𝑎𝑖𝑙 Aerodynamic sway force acting on the sail in transversal Y direction 

𝑟𝑠𝑎𝑖𝑙 Arm between the sail and COG 

𝑇 Propeller thrust force 

𝑉𝑠 Ship speed 

 

What follows is a brief description of how the different forces interact, necessary to understand this 

paper. For easier understanding, the equations written below are expressing force components with 

their scalar values, where the signs follow from the image above. This makes them a bit less general, 

but easier to follow. 

 

All forces and moments acting on the vessel must be in equilibrium, in order for the vessel to sail at a 

constant speed and course. Since our goal is to compare the propeller thrust 𝑇 with and without sail-

assisted propulsion, we need to calculate the required thrust in wind-assisted sailing. Obviously, thrust 

is acting in the longitudinal direction and cannot compensate for any transversal forces. For this 

reason, the transversal hydrodynamic forces acting on the hull and rudder must compensate the 

transversal sail force: 

𝐹𝑦𝐻𝑢𝑙𝑙 + 𝐹𝑦𝑅𝑢𝑑𝑑𝑒𝑟 − 𝐹𝑦𝑆𝑎𝑖𝑙 = 0.  (1) 

 

Further, the thrust needs to compensate both the hull resistance (usual resistance + induced resistance 

due to the drift angle) and rudder resistance: 
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𝑇 = 𝐹𝑥𝐻𝑢𝑙𝑙 + 𝐹𝑥𝑅𝑢𝑑𝑑𝑒𝑟 − 𝐹𝑥𝑆𝑎𝑖𝑙.  (2) 

 

The vessel needs to have a constant course and not rotate around its vertical axis; hence the moments 

need to be in equilibrium as well: 

 

𝑀𝑧𝐻𝑢𝑙𝑙 − 𝑟𝑟𝑢𝑑𝑑𝑒𝑟 ⋅ 𝐹𝑦𝑅𝑢𝑑𝑑𝑒𝑟 − 𝑟𝑠𝑎𝑖𝑙 ⋅ 𝐹𝑦𝑆𝑎𝑖𝑙 = 0.  (3) 

 

In the sketch, the sail is positioned at the bow. This is no accident: most full-hull form ships will have 

the sails placed in the fore. The reason behind this is the fact that in this arrangement the sails help 

compensate the hydrodynamic moment of the hull, which is typically larger than moment generated 

by the sails. The rudder needs to compensate for the remaining difference. 

 

4. Achieving equilibrium in sail-assisted propulsion 

 

Now that we understand the basic conditions that need to be fulfilled, so let us take a closer look at the 

details. How does the vessel achieve equilibrium in practice? Here is the order in which different 

quantities change and adjust themselves: 

 

1. Wind starts blowing from the beam. 

2. Sail starts generating aerodynamic forces 𝐹𝑥𝑆𝑎𝑖𝑙 and 𝐹𝑦𝑆𝑎𝑖𝑙, which push the vessel sideways, 

as well as forward. 

3. As the vessel starts moving sideways, a hydrodynamic reactive force 𝐹𝑌𝐻𝑢𝑙𝑙 starts develop-

ing. The vessel moves forward too, so the net effect is that the vessel sails with a deflection 

angle, called the drift angle, as denoted in Fig.2. 

4. Along with 𝐹𝑦𝐻𝑢𝑙𝑙, hydrodynamic moment acting on the hull, 𝑀𝑧𝐻𝑢𝑙𝑙, also starts develop-

ing. This causes the vessel to turn further towards the wind. 

5. The helmsman, or the autopilot, compensates for the change in heading by deflecting the rud-

der. The rudder deflection is increased until the vessel stops rotating. 

6. At this point, the equilibrium is established. 

 

When assessing the effect of wind-assisted propulsion, this equilibrium condition needs to be 

compared against baseline condition without the sail. Obviously, to do that accurately, we need to 

assess 𝐹𝑥𝑅𝑢𝑑𝑑𝑒𝑟 and 𝐹𝑥𝐻𝑢𝑙𝑙 accurately. To estimate these, we first need to know which drift angle 

the vessel needs to have in order to achieve transversal equilibrium (Eq.𝐹𝑦𝐻𝑢𝑙𝑙 + 𝐹𝑦𝑅𝑢𝑑𝑑𝑒𝑟 −

𝐹𝑦𝑆𝑎𝑖𝑙 = 0.  (1), and then the required deflection angle of the rudder to compensate for the yaw 

moment of the hull to satisfy Eq. 𝑀𝑧𝐻𝑢𝑙𝑙 − 𝑟𝑟𝑢𝑑𝑑𝑒𝑟 ⋅ 𝐹𝑦𝑅𝑢𝑑𝑑𝑒𝑟 − 𝑟𝑠𝑎𝑖𝑙 ⋅ 𝐹𝑦𝑆𝑎𝑖𝑙 = 0.  (3. The drift 

angle of the vessel is a crucial quantity and influences total resistance of the hull significantly. Vessels 

that are not equipped with a vertical fin keel (such as the ones used in sailboats), and especially those 

with a high block coefficient, will need to drift with a significant angle to achieve a meaningful 

𝐹𝑦𝐻𝑢𝑙𝑙. This drift angle will increase the total resistance and reduce the potential gains of sail-assisted 

propulsion. 

 

5. Example: Wind-assisted propulsion of a 230 m bulk carrier 

 

An example study is conducted using CFD on a bulk carrier. The vessel is 230 m long, 33 m wide, 

with a design draft of 14.6 m and 93 000 tons of displacement. She has a conventional hull form with 

a bulbous bow, Fig.3. Ship speed of 12.5 knots is considered. 

 

The CFD study is divided into several phases: 

 

1. Self-propulsion simulations of deflected hull with neutral rudder: 

The purpose of this step is determining hydrodynamic moments and forces on the hull at dif-

ferent drift angles. For this purpose, simulations for at least three different drift angles are 

conducted to obtain a curve that describes how different forces and moments depend on drift 
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angle. The simulations include the rudder in neutral position, since the rudder changes the 

pressure field around the hull and significantly influences its hydrodynamic moments and 

forces. The outcome of this phase are graphs showing 𝐹𝑥𝐻𝑢𝑙𝑙 + 𝐹𝑥𝑅𝑢𝑑𝑑𝑒𝑟, 𝐹𝑦𝐻𝑢𝑙𝑙 +

𝐹𝑦𝑅𝑢𝑑𝑑𝑒𝑟 and 𝑀𝑧𝐻𝑢𝑙𝑙 + 𝑀𝑧𝑅𝑢𝑑𝑑𝑒𝑟 versus drift angle, shown in Figd.4 to 6. Note that the 

longitudinal force 𝐹𝑥 reduces with drift angle, but the total resultant resistance force 𝐹𝑡 =

√𝐹𝑥
2 + 𝐹𝑦

2 increases. 

 

2. Self-propulsion simulations at zero drift angle with deflected rudder: 

In this step, rudder forces relative to its deflection angle when working behind the ship are de-

termined. In these simulations, the vessel is sailing at zero drift angle. Along with the rudder 

force, which then produces the corresponding rudder moment, the deflected rudder induces a 

hydrodynamic moment acting on the hull (despite its zero drift angle). This induced moment 

is a consequence of the modified pressure field on the stern of the hull due to the deflected 

rudder. Fig.6 shows the resulting graph, showing the combined hydrodynamic moment of the 

rudder and hull. 

 

 
Fig.3: Profile view of the bulk carrier 

 

 
Fig.4: Longitudinal hydrodynamic force acting on hull and rudder at different drift angles of hull 

 

 
Fig.5: Transverse hydrodynamic force acting on hull and rudder at different drift angles of hull 
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Fig.6: Hydrodynamic yaw moment acting on hull and rudder at different drift angles of hull, with 

rudder in neutral position 

 

 
Fig.7: Hydrodynamic yaw moment acting on hull and rudder at zero drift angle of hull, with deflected 

rudder 

 

Note that the above procedure assumes that the rudder force is not strongly affected by the deflection 

angle of the hull and that forces and moments obtained from these two sets of analyses can be linearly 

superimposed. Propeller action is considered in this analysis, since the propeller wash significantly 

impacts the flow behind the stern and rudder forces. 

 

Once the above tests are completed, all necessary hydrodynamic data is available for planning the 

number of sails that can be installed, and for predicting the possible benefits of wind-assisted 

propulsion. 

 

Determining the thrust and side force generated by the sail/s 

 

This information typically comes from the sail vendor. The analysis needs to be limited for a certain 

assumed wind direction and strength. In case of our example, a strong beam wind is assumed, at 

which a single sail is estimated to offer 5 tons of thrust (49 kN) and a transversal force of 233.4 kN. 

The vertical moment of the sails will depend on their placement on the vessel, since this determines 

the arm relative to centre of gravity. 
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Determining the number and placement of sails 

 

Using calculated graphs, maximum number and position of sails can be determined. Comparing 

graphs in Figs.6 and 7, it can be observed that rudder deflection can compensate the hydrodynamic 

moment of the hull for drift angle of up to about 2.3°: At deflection angle of 14°s, the rudder moment 

is 𝑀𝑧=1.14e+8 Nm, Fig.7. Reading the hull drift angle that corresponds to this moment from Fig.6 

yields the drift angle of around 2.3°. This is the maximum drift angle that the rudder can compensate, 

without any help from the yaw moment generated by the sails. On the other hand, the 𝐹𝑦𝑆𝑎𝑖𝑙𝑠 needs 

to be compensated by the hull. For a single sail, the hull needs to be deflected by around 1° (reading 

from Fig.5 for a force of 233.4 kN). Further, the deflection angle is around 2.1° for two sails, 3.2° for 

three, and around 4.2° for four sails.  

 

If relying on rudder deflection alone for compensating the moment, it would only be possible to install 

two sails. Luckily, the sails can be placed in the front part of the hull, and aid in maintaining the 

course of the vessel. Fig.8 shows the profile view of the vessel. Sails can be retrofitted on top of 

transversal bulkheads, as denoted with red circles and numbers. The red X denotes the location of the 

centre of gravity. Sails installed forward of the centre of gravity will aid in maintaining the course of 

the vessel. Placing one sail at location 2, and two sails at location 1, yields a compensating sail mo-

ment of 𝑀𝑧𝑆𝑎𝑖𝑙 =4.06e+7 Nm. 

 

As mentioned, the hull drift angle for three sails is 3.2°. The corresponding moment of the hull and 

rudder, Fig.6, is around -1.4e+8 Nm. Adding the moment of the sails, the moment that the rudder 

needs to compensate is 4.06e+7 – 1.4e+8 = 1.04e+8 Nm. The corresponding rudder deflection angle is 

around 12.8°, Fig.7. This is a high, but manageable rudder angle. Therefore, it can be concluded that 

this is a feasible but also maximum number of sails that can be installed. 

 

 
Fig.8: Profile of the ship with marked locations for potential sail installation. The red x marks the 

centre of gravity. Two sails can be placed at each longitudinal location. 

 

Calculating power gains obtained with wind-assisted propulsion 

 

Finally, we can predict power savings using wind-assisted propulsion. For this purpose, additional 

CFD simulations are conducted where the vessel is simulated at exactly 3.2° drift angle, and with a 

deflected rudder, to predict the required thrust and propeller power. Baseline power consumption is 

also calculated for a vessel sailing at zero drift angle without sails. Table II shows the summary 

comparison. 

 

From the table, it can be seen that the total hull resistance increased by almost 17% when using sails. 

This increase is due to the induced resistance of the hull at the non-zero drift angle, and rudder 

deflection. Indeed, most sail-generated thrust (107 out of 147 kN) is used for compensating the 

induced resistance. Useful sail thrust is further reduced by induced rudder resistance, where the final 

impact in terms of thrust reduction is around 17 kN.  

 

This means that in this particular case, only 12% of sail-generated thrust is being utilized. Despite 

this, the reduction in delivered propeller power is almost 6%. 
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Table II: Comparison of conventional and wind-assisted propulsion 

 

 

Conventional 

propulsion 

Wind-assisted 

propulsion 
Difference, % 

Sail thrust, 𝐹𝑥𝑆𝑎𝑖𝑙𝑠 [kN] 0 147.0  

Rudder deflection [deg] 0 12.8  

Drift angle [deg] 0 3.2  

Total resistance 𝐹𝑡 [kN] 529.3 636.9 16.9% 

Propeller thrust, T [kN] 650.2 633.0 -2.7% 

Delivered propeller power, [kW] 5227.1 4944.9 -5.7% 

 

4. Conclusion 

 

A detailed analysis of wind-assisted propulsion is given in this paper, with the focus on induced 

hydrodynamic drag. Analysis is performed on an example bulk carrier, representative of a full-form 

vessel that could be a candidate for a wind-assisted propulsion retrofit. In this case, no underwater 

retrofit is planned, in form of hydrodynamic lifting surfaces such as vertical fin keels or similar. 

 

The following observations are made from this analysis: 

 

1. The sail area that can be installed is limited by the high hydrodynamic moment induced on 

the hull when sailing with a drift angle. Sails need to be installed in the forward part to aid in 

reducing this moment. 

 

2. Due to a high drift angle and poor lift-to-drag ratio of the hull, total hull resistance increases 

significantly. This reduces the useful portion of the sail-generated thrust. 

 

3. For the present example in ideal beam wind conditions, only 12% of sail-generated thrust is 

being utilized to reduce the propulsion power, while the remaining 88% is used to compensate 

for induced drag of the hull and rudder. 

 

4. The resulting power savings is 5.7%. 

 

In conclusion, the following is suggested: 

 

1. Retrofitting the underwater hull together with the sails, in form of vertical keels or similar, to 

improve the lift-to-drag ratio of the hull. 

 

2. Taking careful consideration of induced hydrodynamic drag within wind-assisted propulsion 

feasibility studies. 
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Abstract 

 

Wind propulsion is gaining momentum as a means of producing low-carbon propulsion energy for 

ships, helping to reduce shipping emissions. However, one challenge remains: how to measure the 

performance of sails on a continuous basis. This issue has both commercial and regulatory 

implications. In this paper, a novel methodology for measuring sail performance is introduced, along 

with full-scale results demonstrating the methodology's applicability.  

 

1. Introduction 

 

In recent years, wind propulsion has emerged as a promising solution for low-carbon propulsion in the 

maritime sector. As international shipping faces increasing pressure to decarbonize and meet upcoming 

environmental regulations, alternative propulsion technologies are gaining attention. Among these 

technologies, rotor sails are leading the way. The integration of modern rotor sails into ship designs has 

the potential to significantly reduce fuel consumption and emissions by harnessing the renewable 

energy of the wind. 

 

Despite the growing interest and advances in wind-assisted propulsion systems, one key challenge 

remains unresolved: the continuous and reliable measurement of sail performance in real-world 

operations. This challenge is critical not only from a technical standpoint but also for its commercial 

and regulatory implications. Ship operators and stakeholders require accurate performance metrics to 

evaluate the economic viability of wind propulsion technologies to optimize their usage. Similarly, 

regulatory bodies must have accurate real-time sail performance data to correctly credit ships for the 

installed low-carbon propulsion. 

 

To address this gap, this paper introduces a novel methodology for measuring the performance of sails 

under full-scale operational conditions. The proposed approach is designed to overcome limitations of 

performance predictions of analytic formulas and other modelling-based methods.  

 

2. Why is continuous performance measurement needed? 

 

Continuous measurement can be seen as logical development step for the rather novel technology of 

modern sails. Without continuously measuring the performance of the sails, assessing the real benefit, 

reliability, and compliance with regulations is difficult and inaccurate. The continuous performance 

measurements are necessary to: 

 

1) Validate performance claims made by vendors 

2) Monitor optimal performance of the system over time  

3) Sustain continuous development of both wind propulsion systems and the overall ship designs 

4) Enable overcoming the “owner-charterer” dilemma 

5) Enable considering wind as an energy source in a regulatory context 
 

Validating the performance promises from the sail vendors is challenging without access to continuous 

real-time performance data. Options without the continuous performance data are limited to full-scale 

point testing of computational models or purely computational tools, both of which are prone to 

significant errors.  

 

It has been shown in Paakkari (2025) that small bias in sail control can lead to significant drop of sail 

performance, which can be unnoticed in full-scale spot testing, and obviously in computational tools. 
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In the study, anemometer bias was selected as an example to show how just 30° error in orientation of 

the sensor can lead to performance loss of over 50%. This loss would yield only 6% mean difference 

between the ideal performance and the results from five control points at sea trials. 

 

Time spares no one and leaves its mark on us all. Without continuous monitoring, it is impossible to 

detect performance drift over time. Monitoring the performance data enables corrective actions and 

maintenance immediately after any decrease in performance is noticed. The same data can be used for 

studying and improving the sails, and the whole sail-ship system, in real life conditions. 

 

All the benefits of the continuous performance measurements are not purely technical. The maritime 

industry is striving towards lowering carbon emissions of shipping. A crucial aspect of this are the 

efforts done in lowering the carbon intensity of the energy mix used onboard. Continuous measurement 

of the produced sail benefit enables the real-time information about the contribution of the wind 

propulsion to the total produced energy of the ship. The information simplifies the work of regulators, 

owners and charterers by making the process of accounting for wind energy in different contexts 

straightforward and transparent.  

 

3. Method 

 

The presented method requires inputs from sails and ship to function. Certain measuring equipment 

needs to be available, both on sails and ship, to provide necessary data. Required inputs for the system 

are sail thrust force 𝐹𝑥,𝑠𝑎𝑖𝑙, sail lateral force 𝐹𝑦,𝑠𝑎𝑖𝑙, ship’s shaft thrust force 𝐹𝑥,𝑝𝑟𝑜𝑝, and ship’s shaft 

power 𝑃𝑝𝑟𝑜𝑝. Fig.1 illustrates the required signals from sails and ship. Sail thrust and lateral force 

measurement require thrust measurement system. Shaft power and thrust meters are required for 

providing ship data. Measurement arrangement for the sail forces, and the principles of the method are 

further explained. Shaft power and thrust measurements are well established and instrumentation is 

widely available. 

 

 
Fig.1: Required signal inputs for the continuous measurements 

 

3.1. Measuring sail forces 

 

Accurately measuring the sail performance requires continuous measurement feedback of the forces 

produced by the sails. The thrust measurement system deployed on NPRS is based on measuring the 

surface pressure on the sail with pressure transducers. This measured surface pressure field is then used 

to calculate the force magnitude and direction applied by the sails.  

 

The pressure-based measurement system can be considered the most direct measurement of the magnus 

effect. The measurement principle has been earlier used in academia in wind tunnel tests, Bordogna 

(2020). The surface pressure measurement can be expressed as p(𝜃), which is the function a pressure 

measurement obtained from angle θ. The force per meter acting on a sail is obtained by integrating the 
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pressure p(𝜃) over the circumference. 

 

𝑭𝑹𝑺

ℎ
= ∫ 𝑝𝑘(𝜃)𝒏 𝑟 ⅆ𝜃

2𝜋

0

(1) 

  
The total force is obtained by integrating over the sail height  

 

𝑭𝑹𝑺 = ∫ ∫ 𝑝𝑘(𝜃)𝒏 𝑟 ⅆ𝜃 ⅆℎ
2𝜋

0

𝐻

0

 (2) 

 

The total force can be divided into thrust and lateral force. Thrust force and lateral force are used in the 

formulation of continuous measurement and are referred as 𝐹𝑥,𝑠𝑎𝑖𝑙 and 𝐹𝑦,𝑠𝑎𝑖𝑙 respectively. 

 

3.2. Net main engine power demand reduction  

  

The main engine equivalent power produced by the sails is defined as a contribution of the sails to the 

total propulsive force of the ship at any given moment: 

 

𝑃𝑝𝑟𝑜𝑝,𝑠𝑎𝑖𝑙 =  
𝐹𝑥,𝑠𝑎𝑖𝑙 × 𝑉

𝜂
 (3) 

 

Where 𝑉 is the ship speed and 𝜂 is the total propulsive efficiency of the ship. To overcome the issue of 

defining the total propulsive efficiency, a new parameter called Power ratio, 𝑃𝑅𝑆𝑎𝑖𝑙, is defined. This 

power ratio describes the share of sail propulsion in the overall ship propulsion: 

 

𝑃𝑅𝑆𝑎𝑖𝑙 =  
𝑃𝑝𝑟𝑜𝑝,𝑠𝑎𝑖𝑙

𝑃𝑝𝑟𝑜𝑝 
 (4) 

 

With the assumption of constant total efficiency in both the relationship further develops: 

 

𝑃𝑅𝑆𝑎𝑖𝑙 =  
𝑃𝑝𝑟𝑜𝑝,𝑆𝑎𝑖𝑙

𝑃𝑝𝑟𝑜𝑝 
=

𝐹𝑥,𝑆𝑎𝑖𝑙 ∗ 𝑉
𝜂

𝐹𝑥,𝑝𝑟𝑜𝑝 ∗ 𝑉
𝜂

=
𝐹𝑥,𝑠𝑎𝑖𝑙

𝐹𝑥,𝑝𝑟𝑜𝑝 
 (5) 

 

And further: 

𝑃𝑝𝑟𝑜𝑝,𝑠𝑎𝑖𝑙 =
𝐹𝑥,𝑠𝑎𝑖𝑙

𝐹𝑥,𝑝𝑟𝑜𝑝
∗ 𝑃𝑝𝑟𝑜𝑝 (6) 

 

From the relation above, we note that all the variables are such, that it is possible to directly measure 

them. 𝐹𝑥,𝑠𝑎𝑖𝑙 is measured from the sail pressures, and 𝑃𝑝𝑟𝑜𝑝 and 𝐹𝑥,𝑝𝑟𝑜𝑝 are measured from ship’s shaft 

line. Hence the measurement principle used to measure the 𝑃𝑝𝑟𝑜𝑝,𝑠𝑎𝑖𝑙 is very straightforward. This is a 

significant advantage, as it allows using a limited number of sensors and enables a transparent 

measurement setup with minimal amount of complicated post-processing.  

 

However, forces produced by rotor sails affect the dynamics of the ship. Well known phenomena are 

lateral force induced drift, heel, and yaw moment, which may increase the total resistance of a ship. 

Simultaneously, sail induced thrust affects the efficiency of the propeller.  

 

Lateral forces and the resulting yaw moment must be balanced by opposite hydrodynamical forces. 

Resulting yaw moment is strongly affected by location of the sails on the ship. Yaw moment is being 

balanced by increasing rudder angle. Lateral force pushing the ship sideways balances out when 

resulting drift induces enough opposing side force. Due to tall structure of the sails the lateral force acts 
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well above the deck, creating considerable heeling moment, which is balanced by rotation of the hull. 

All these balancing forces may increase the total resistance of a ship. On other hand, forward thrust 

reduces propeller loading affecting ships open water efficiency and can cause positive influence. 

 

Whenever comparing the case of the ship with sails to (real or imaginary) case without the sails, the 

rotor sail impact on ship dynamics should be considered. When deriving Eq.(6), total efficiency was, 

for convenience, assumed to be same for sail and propeller propulsion. The total efficiency 𝜂 consists 

of hull, open water propeller, relative rotative, shaft, and engine efficiencies. In terms of force balance 

between sail and propeller propulsion, the hull and open water efficiencies are being affected when 

comparing the two propulsion sources. Thrust produced by the propeller is always subject to added 

resistance due to its influence on the flow around ship’s aft body. The effect is taken into consideration 

by applying thrust deduction coefficient. In terms of sail forces, two main sources of impact on ship 

dynamics can be defined as lateral force and change of open water propeller efficiency. With the 

proposed effects in consideration Eq.(6) becomes as follows: 

 

∆Psail,ind =
𝐹𝑥,𝑠𝑎𝑖𝑙 −  ∆𝑆 

𝐹𝑥,𝑝𝑟𝑜𝑝 ∗ (1 − 𝑡)
∗ 𝑃𝑝𝑟𝑜𝑝 (7)  

 

Where ∆𝑆 denotes the rotor sail impact on ship dynamics including the lateral force and efficiency 

change. 𝑡 denotes thrust deduction factor. The thrust deduction factor is derived either from the model 

tests of the ship or using semi-empirical relations such as Holtropp-Mennen. The rotor sail impact on 

ship dynamics ∆𝑆 can be derived either by full-scale, model-scale or numerical experiments and is 

unique for each ship. 

 

3.4. Wind propulsion net benefit 

 

Rotor sails consume power in order to generate thrust. Wind propulsion net benefit simply deducts sail 

used power from the net main engine power demand reduction.  

 

∆Psail,ind,net =
𝐹𝑥,𝑠𝑎𝑖𝑙 −  ∆𝑆 

𝐹𝑥,𝑝𝑟𝑜𝑝 ∗ (1 − 𝑡)
∗ 𝑃𝑝𝑟𝑜𝑝 − 𝑃𝑠𝑎𝑖𝑙,𝑐𝑜𝑛𝑠 (8) 

 

Where ∆Psail,ind,net is wind propulsion net benefit, and 𝑃𝑠𝑎𝑖𝑙,𝑐𝑜𝑛𝑠 is the power consumed by sail system. 

As a result, indicator for the net benefit of the sail system is achieved and can be used for operational 

optimization.  

 
4. Results 

 

Before testing the methodology on a real ship, purely computational desktop feasibility study of the 

method was performed. Desktop evaluation has no contact with any real ship and is done to just study 

the theoretical accuracy of the methodology. Desktop evaluation and the real ship analysis are both 

done to net main engine power demand reduction i.e., the sail force effects on the achieved power are 

taken into consideration through ∆𝑆, but sail consumed power 𝑃𝑠𝑎𝑖𝑙,𝑐𝑜𝑛𝑠 is neglected. During the full-

scale campaign, the sail was run using auxiliary power source, thus neglecting the 𝑃𝑠𝑎𝑖𝑙,𝑐𝑜𝑛𝑠 is justified 

for getting exact comparison of shaft power with and without the sail. Results of both, desktop study 

and the study on a real ship, are presented next. 

 

4.1. Desktop evaluation 

 

The study was done by using 3 DOF model to represent a ship. The model is a low-fidelity program 

based on force equilibrium in longitudinal and lateral directions, and moment balance around centre 

axis. The rotor sail thrust is used to decrease the load required from the ship’s propeller. In addition to 

thrust force, rotor sails produce also lateral force and yawing moment. The additional lateral force will 

cause the ship to drift and the yawing moment will be cancelled with rudder action. The drift and rudder 
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angle will increase the ship’s resistance, and the additional impact should be considered when 

evaluating the required main engine power. These effects can be considered by solving the force and 

moment equilibrium equations in surge, sway and yaw directions. The model was validated against 

results in Kramer and Steen (2022) with corresponding hydrodynamical derivates and lateral forces.  

 

The same ship model as for the validation of 3 DOF model was used to perform the numerical feasibility 

study. It is important to note that the used ship model has nothing to do with SC Connector and was 

selected purely for desktop evaluation of accuracy of the continuous measurement methodology. 

Determination of the correction ∆𝑆 was carried out using numerical approach. Required propulsion 

powers, for various wind conditions, with and without rotor sails were calculated with 3 DOF method, 

achieving directly the power saved by rotor sails. These calculations can be referred to numerical 

ON/OFF tests as the principle is same as in full-scale. Results were compared to results calculated by 

net main engine power demand reduction ∆Psail,ind. By comparison, good understanding about 

precision of the presented method is obtained. 

 

Fig.2 presents the percentual error between directly calculated power savings ∆Pdirect from numerical 

ON/OFF tests of the 3 DOF model, and net main engine power demand reduction ∆Psail,ind. Same sail 

locations as in work of Kramer & Steen, i.e., 𝑋/𝐿 = 0, 0.25, 0.4 were used, where 𝐿 is length of a ship 

and 𝑋 is the location of the sail, measured as distance from midships to bow. Each data point represents 

different wind condition, providing wide variety of sail thrust and lateral forces. The ratio between 

thrust produced by sails and ship propulsion is expressed with 𝑇𝑟𝑎𝑡𝑖𝑜,𝑠𝑎𝑖𝑙. The value highlights the great 

variety of different operating conditions. 

 

Majority of the data points are within ±5% of difference. Highest deviating single points for 𝑋/𝐿 =
0, 0.25, 0.4 indicate respectively -40.49%, -26.23%, and -26.85% difference between ∆Psail,ind and the 

directly derived savings from 3 DOF. The mostly deviating data points are from wind conditions, where 

the sails produce almost only lateral force. In such cases the power produced by sails is low and the 

error percentage gets overly amplified. Root mean square error (RMSE) value for the cases with sail 

located at 𝑋/𝐿 = 0, 0.25,0.4 are 4.61kW, 3.81kW, and 3.65kW respectively, which is low in context 

of ship propulsion.  

 

Due to low RMSE values, and its sensitivity to higher deviations, it can be reasoned that the deviating 

data points from the borderline wind conditions are not significantly affecting the precision of the 

method. All the most deviating data points are underpredicting the sail generated power, making the 

method slightly conservative. Influence of the signal errors on the precision of the methodology was 

analysed and no degradative influence on robustness was found. 
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Fig.2: Error between ∆𝐏𝐬𝐚𝐢𝐥,𝐢𝐧𝐝 and ∆𝐏𝐝𝐢𝐫𝐞𝐜𝐭3 DOF 

 

4.2. Full-scale tests 

 

Experimental test campaign was conducted onboard of Ro-Ro vessel SC Connector at the North Sea. 

The vessel has overall length of 154.50 m, and gross tonnage of 12803. Vessel is equipped with two 

35x5 m rotor sails. The test campaign was conducted using only the fore sail. During the campaign 

∆S was derived with the full scale experimental approach. ON/OFF measurements were used to 

compare results of ∆𝑆 corrected net main engine power demand reduction ∆Psail,ind, and ∆Pdirect i.e., 

the power reduction defined by ON/OFF tests. Procedure of ON/OFF testing was similar to the one 

described in ITTC 7.5-04-01-02 “Sea trials for assessing the power saving from wind assisted 

propulsion - guidelines”, ITTC (2024). The vessel’s speeds during the tests varied between 9-15 knots, 

providing a good range describing different operational conditions. The ship is equipped with control-

lable pitch propeller. For the purpose of the trials, the propeller rpm was kept constant, and the 

adjustment to speed was carried out by changing the propeller pitch. 

 
Tests were performed in varying wind conditions, with the aim to gather diverse data points representing 

different combinations of sail thrust and lateral forces. The amount of data is rather small but gives an 

understanding of the capabilities of the discussed method. Experienced wind conditions varied from 

apparent wind speeds between 7 to 16 m/s, and apparent wind angles from very headwinds to complete 

tailwind. Encountered wind conditions give rather a good sweep over different sail forces. Reduction 

in required shaft power varied from 260 kW to over 900 kW, and percentage of wind propulsion from 

total varied between 7 and 38%. The achieved power reductions during the campaign should not be 
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seen as average savings potential for the rotor sail technology onboard. Each test points represent only 

the very moment when the measurement was conducted. 

 

Accuracy of the net main engine power demand reduction ∆Psail,ind was assessed by comparing the 

results with ON/OFF tests at the same time instance. To achieve normalized results vessel’s speed was 

kept constant during ON and OFF phases of the test cycle. If same speed could not be achieved, speed 

correction to the ON/OFF results was applied by using speed-power curve. On average velocities within 

0.2 knots were achieved during ON and OFF cycles. The largest deviation was 0.93 knots. It was 

observed that used speed-power curve was not predicting well the influence of such big difference, and 

the results for this point were inaccurate. Thus, the point was removed from the data set, and the velocity 

difference guideline was tightened to avoid collecting more points with such difference. 

 

The result of comparison is presented in Fig.3. X-axis represents the power saving results achieved by 

ON/OFF tests, and Y-axis the power savings achieved by the ∆Psail,ind methodology at the same 

instance. Tests points in the figure demonstrate correlation between the two results. Part of the test runs 

were used for defining ∆S correction. These points are excluded from power predictions and expressed 

as dependent measurements. The perfect match between the results would mean that the trendline drawn 

through the independent predicted points would have a slope of one. The results have good correlation, 

even some scatter can be observed.  

 

 
Fig.3: Comparison between ∆𝐏𝐬𝐚𝐢𝐥,𝐢𝐧𝐝 and ON/OFF test results 

 

Table I: Errors of independent measurement points 

       
 

Measurements are done in real life sea conditions during normal operation of the vessel, thus certain 

level of scatter is unavoidable. Coefficient of determination 𝑅2 shows that the variation of data is well 

ON/OFF [kW] ∆P sail,ind [kW] Error [%]
427.9 545.8 -21.6
954.3 790.0 20.8
879.6 806.9 9.0
495.9 477.0 4.0
656.7 566.8 15.9
285.7 274.0 4.3

Ave:               616.7 576.7 6.9
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explained by the trendline. Error of independent predicted points, presented in Table I, vary from 4% 

to -21.6%. Positive values represent underpredicted ∆Psail,ind values and negative overpredicted. 

Values from the ∆Psail,ind are mostly underestimating the generated power. Root mean square error of 

the whole data is 74 kW, which can be seen as low in the context of full-scale ship power measurements. 

 

5. Discussion  

 

Development and implementation of new continuous measuring technology in wind propulsion industry 

plays a crucial role in increasing the understanding and attractiveness of the sail technologies. Promising 

results in real life sea conditions have been achieved with the methodology presented in this work. The 

chaotic operational environment of ships should be considered when interpreting the results and the 

differences. It is fair to say that perfect match will never be achieved.  

 

Current data shows slight conservativity in obtained measurement points. Mostly power is slightly 

underpredicted compared to the ON/OFF results. Underprediction can be seen in Fig.3 from the slope 

for independent values being below one. Currently, the slope has clear deviation from the perfect match 

of one, but with the size of the dataset, and the distribution of the current points, the slope is very prone 

to changes. Single points have deviation up to -21.6%, but greater focus should be placed on the average 

of the predicted power, which is 6.9%, as single points are prone to errors.  

 

Clearly, the experimental dataset used for validation of the method is still small. The reached accuracy 

with such short campaign can be seen as a success. The accuracy is expected to grow with increasing 

amount of data. Work to collect more data is ongoing at the very instance of writing this document. 

Simultaneously third-party validation process is ongoing. 

 

The theoretical challenge of the presented methodology is in accounting for the impact of sail forces on 

the ship behaviour and efficiency, and in correctly accounting for speed difference in ON/OFF testing. 

Deploying the continuous measurement system requires understanding the behaviour of the ship under 

influence of the sail forces. Defining the influence directly from the vessel through sea trials data is 

proving to be functional approach. Another approach is defining the sail impact by modelling the ship 

behaviour with computational tools. Validation of the computational approach is under work and will 

be topic of separate publication.  

 

Important practical aspects are strongly related to calibration of measurement equipment. Accurate 

readings are necessary to achieve accurate results, thus calibrating all the required measurement 

equipment before deploying the continuous measurement system is a matter of priority.  

 

6. Conclusion  

 

Results seen until now provide very promising insight about the presented continuous measurement 

system. Average power reductions between the results from full-scale ON/OFF tests and the continuous 

predictions differed by 6.9%. Wind conditions, vessel speed, and the proportion of wind propulsion 

varied greatly during the campaign, highlighting the capability of the continuous methodology across 

various operational ranges and conditions  

 

The dataset is still small, but results are showing good correlation with the full-scale ON/OFF results. 

Ongoing full-scale campaigns and third-party validations will add reliability to the method. It can be 

expected that the continuous measurement will be new standard for assessing the performance of the 

wind propulsion systems in shipping industry in the near future. 
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Abstract 

 

When a vessel charter is considered, ship operators need to estimate the fuel performance of unknown 

vessels. Although limited data is publicly available to assist in this assessment, it can be leveraged with 

specific calculation models. This paper explains first how Fuel Consumption clauses of Charter Party 

agreements work. Then the publicly accessible data sources and different methodologies for estimating 

the vessel fuel performance prior fixture are reviewed. Finally, the paper presents the results of a case 

study involving ten bulk carrier vessels, demonstrating the effectiveness of the various estimation 

methods in real-world applications.

 

1. Introduction 

 

1.1. Importance of the question 

 

In the past decade, rising fuel costs and increasingly stringent regulatory frameworks, such as Fuel EU 

EU Emissions Trading System (EU ETS) and Carbon Intensity Indicator (CII), have heightened the 

need for ship operators to accurately assess the vessel's performance before making decisions. 

Understanding a vessel’s fuel efficiency and compliance capabilities has become essential for managing 

operational costs and adhering to environmental regulations. Furthermore, some commercial charterers 

prioritize vessels that can transport cargo with minimal carbon dioxide emissions, reflecting the growing 

demand for sustainable shipping practices.  

 

Whether negotiating new charter contracts, assessing transport costs, joining a pool, or considering the 

purchase of a second-hand vessel, a solid understanding of a vessel’s performance can strengthen the 

negotiation position, significantly influence financial outcomes, and ensure compliance with evolving 

industry standards.  

 

1.2. Impacts on vessel performance and how it changes over time 

 

Many stakeholders and environmental factors impact the current vessel's performance. To estimate the 

consumption of an unknown vessel, these factors need to be considered somehow. The main factors 

are: 

 

• The Design of the vessel: Hull and Propeller Designs and dimensions will have different hy-

drodynamic properties and thus propulsion fuel consumption values.  

• Paint performance: The antifouling and roughness degradation over time can have a high im-

pact on the frictional resistance of the vessel. Also, Hull Cleaning actions will have an impact 

on this, as frequent reactive cleanings can reduce the effectiveness of the antifouling and in-

crease the vessel's roughness. 

• Biofouling pressure: The fouling pressure of the global area where the vessel was operated in 

the past. It can be quite different as Marine species grow more in warm regions and the likeli-

hood of getting a fouled hull increases significantly with the duration of an idle stay in such 

waters. 

• Machinery maintenance: The maintenance condition of the ship machinery can have a particu-

lar impact on its fuel efficiency. This has an effect but can hardly be measured without detailed 

vessel operational data. 

• Wear & tear and mechanical damages to the ship hull and propeller over time are other effects 

that can scarcely be measured. 
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Different disciplines are involved in keeping vessel performance at its optimum. Hence, it is challenging 

to correctly account for all these aspects when predicting the performance of an unknown vessel.  

 

2. The CP Description 

 

2.1. About a Charter Party 

 

A Charter Party contract is a written charter agreement between the disponent owner and merchant or 

cargo owner. That contract places the owner’s vessels at the charterer's disposal and regulates mutual 

terms and obligations. The Charter Party is a legally binding and internationally recognised document. 

The owners are being paid in the form of freight for voyage charters, and in our case, for the specific 

period charters, the owners remunerations are being known as hire, Plomaritou (2014). 

 

There are many types of Charter Parties, but this chapter will concentrate on Time Charters and Trip 

Time Charters for the specific vessel's performance descriptions. The Charter Party is a legally tricky 

agreement with many particular variations, which this study cannot fathom in this document in detail. 

Thus, the study concentrates on standard forms (like BIMCO), clauses, specific wording and attributes 

that one finds in such forms, Wilson (2010). 

 

2.2. Vessel Performance clauses within charter parties 

 

The so-called "vessel performance" is part of the Charter Party "Vessel Description" clause, usually 

part of the Charter Party Rider and Annex. This clause describes the vessel's particulars and how to read 

or interpret them. Often, in the period charter, such a description may be a separate Annex with the 

Ship's Particulars, General Arrangement plan, and many other documents that the charterer may request 

during the negotiation phase. An example of a typical description is shown in Fig.1. 

 

 
Fig.1: Example of the CP Description attributes 
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Most period Charter Parties have the following descriptions regarding the vessel's speed and 

consumption relation - serving as strict reports filtration parameters, Plomaritou (2014): 

 

I. Main descriptors: 

• Bunker Grade: description of the allowed bunker grades in ISO (8217/2010) format, 

• "About" statement to indicate not precise descriptions, usually in wording like "About" 

shall mean an allowance of plus/minus 0.5 knots for speed and/minus 5 per cent for fuel 

oil/diesel oil / low sulphur gas oil consumption. 

• Weather range, so-called "Good Weather Conditions" for the description. In most con-

tracts, it is up to a wind 4 Beaufort force and Douglas Sea state 3. Often, the significant 

wave height is additionally restricted to 1.25m. 

• The central description part is the speed vs. consumption pair. In most cases, total con-

sumption is the sum of the Main Engine, Auxiliary Engines, and Boiler. Some cases 

have, however, ME-only descriptions. The speed-consumption pair may be divided into 

Maximum / ECO / Super ECO and Super Slow Steaming parts. Some Charter Party 

agreements have only a "single speed" description. 

• The central part may be divided into "warranted" and "without guarantee" speeds and 

consumption pairs. 

• In the case of the ME-only speed-consumption description, the Auxiliary Engine con-

sumption should be defined when at sea. 

• Description of Auxiliary Engines consumption in port divided into "Idle" and "Working" 

phases. 

 

II. Additional CP description attributes. The additional array of filtration wordings may include 

phrases like: 

• "with no adverse currents and no current factor": excluding the periods with adverse cur-

rents. Sometimes, with additional "as recorded in ship log books," which would exclude 

the hindcast as a weather source. 

• "favourable currents not to be taken into account" 

• "not exceeding summer draft and even keel" without an exact description of what laden 

and ballast may indicate. 

• "excluding any voyage under 36 hours duration." 

• "subject to good weather days of 24 consecutive hours." 

• excluding "periods during reductions of speed for safety, sailing in piracy areas, in con-

gestion, in reduced visibility, manoeuvring or sailing in shallow/restricted waters, when 

loaded with deck cargo and when approaching/entering/leaving ports, rivers, canals, etc." 

• “any gain over and above the minimum warranted performance to be set off against loss 

on time and/or consumption.”  

• “no excessive hull fouling due to anchoring" or similar wording to exclude long idle 

times without cleaning. 

• "No extrapolation allowed" - a significant and harsh statement disallowing the extrapola-

tion of "good weather" calculations into "bad weather" periods. 

• "vessel entitles to use more diesel oil in narrow/shallow/busy waters and engine start-

ing/stopping" without giving specific values or ranges. 

 

Calculation methodologies or mathematical formulas are usually not part of the Charter Party. Instead, 

it is formulated using the long and unclear methodology used during arbitration and legal disputes. As 

the main "about" description and various matrix of used attributes vary significantly, the interpretation 

and these quasi-performance calculations are unclear and open the doors for different interpretations 

between the owner and charterer. Apart from that, as given in the media, the weather worldwide has 

worsened during the last few years, finding the "good weather" days is becoming more and more 

difficult during the voyages. Additional attributes practically filtrate out most of the good weather days, 

rendering that pseudo-methodology statistically impotent to establishing the vessel's performance. 
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2.3 Consequences of used consumption methodologies 

 

The CP description is a legal promise from owners to charterers, used in voyage calculations and 

impacting the Profit & Loss tools, including planned bunker price calculations vs. actual fuel 

consumption. Note that the CP descriptions are usually set when the contracts between owners and 

charterers are signed and not adjusted within the contract timeframe until there are specific provisions 

regarding post-drydocking performance. Furthermore, owners often do not sufficiently consider the 

impacts on vessel performance described in this study under 1.2. This also has to do with how charter 

contractors operate, Nugroho (2005). One can determine the difference between the measured fuel 

performance based on noon reports and the Charter Party consumption figures as a CP overconsumption 

percentage: 

 
 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑃 𝑂𝑣𝑒𝑟𝑐𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =
𝐹𝐶𝑁𝑜𝑜𝑛𝑅𝑒𝑝𝑜𝑟𝑡𝑠(𝐷𝑟𝑎𝑢𝑔ℎ𝑡, 𝑆𝑝𝑒𝑒𝑑, 𝑊𝑒𝑎𝑡ℎ𝑒𝑟)

𝐶𝑃𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛(𝐷𝑟𝑎𝑢𝑔ℎ𝑡, 𝑆𝑝𝑒𝑒𝑑, 𝑊𝑒𝑎𝑡ℎ𝑒𝑟)
 

 

Fig.2 shows the average CP Overconsumption estimation for a fleet of 55 bulk carriers over a 5-year 

Dry Docking period of the bulk carrier chartering company partnered for this study.  

 

 
Fig.2: Charter Party overconsumption within a Dry Docking period (each point shows one vessel) 

 

One can observe that the overconsumption compared to the Charter Party agreement gets higher as time 

passes since the last Dry Docking. The linear trendline of the graph shows an average overconsumption 

percentage rising to about 3.5% yearly since Dry Docking. It has to be said that the presented graph 

includes owners doing due diligence in recalibrating descriptions before starting a new charter and 

owners not calibrating descriptions at all. 

 

The current practice of relying on Charter Party consumptions for vessel operations is impractical. Some 

improvement could be made by accounting for performance degradation over time. Owners and 

charterers should incorporate an assumed degradation slope into the "vessel performance" clauses, 

ensuring a more accurate reflection of fuel efficiency within the Dry-Docking period. 

 

The reluctance to take steps towards improving chartering processes is based mainly on the lack of 

proper scientific and legal sound approaches to the calculation process. Without such a robust scientific 

assessment and an effective incentive structure, the potential for performance improvements and CO2 

reduction will largely remain untapped. This needs to change. Addressing these issues with a more 
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scientific and structured approach can help improve accuracy, efficiency, and sustainability in vessel 

operations, Bonello and Smith (2019). 

 

Due to the limited quality and reliability of the Charter Party fuel tables, charters shall pre-evaluate a 

vessel based on available data before the fixture. Available methodologies for this are analyzed in the 

following chapters. 

 
3.  Available data and performance prediction methods 

 

3.1. Publicly available data 

 

Estimating fuel performance for unknown vessels relies on the availability and accuracy of public data 

sources. One can get base information about vessel designs from general web portals like the one from 

IHS Markit. Such databases provide general vessel information like the dimensions, engine types, build 

year, and some retrofit history. One needs to keep in mind that certain information might not be up to 

date. It is also important to note that these sites do not directly offer fuel performance data; however, 

vessel characteristics are needed for performance prediction calculations.  

 

Furthermore, there is a variety of providers that offer AIS Position Data. Automatic Identification 

System (AIS) data is critical for tracking vessel movements and operational patterns. One can identify 

the speed profile, operational area, and distance travelled by analysing AIS data. One should keep in 

mind that AIS was developed for vessel identification and practically as a helpful tool to improve 

collision avoidance; thus, the input needs to be understood in this context. For instance, draught 

information will more likely be the maximum draught than the mean draught of the vessel. Also, Officer 

On Watch manually updates such information, and there can be many instances where AIS manual 

inputs are wrong or never adequately updated. 

 

In addition to general information about the vessel and its current operational patterns, one can obtain 

some Emission data for it in case the vessel travelled to Europe. EU Monitoring, Reporting, and 

Verification (MRV) data is publicly available and discussed further in chapter 3.6. 

 

These sources collectively provide a framework for assessing vessel fuel performance. However, the 

effectiveness of the estimations hinges on the integration of data from the varied sources into coherent 

models that reflect the complexities of vessel operations. Each source has its strengths and limitations, 

understanding these is key to making an optimum forecast of fuel performance analysis. 

 

3.2. Predictions using the EEDI and EEXI 

 

The EEDI was adopted by the International Maritime Organization (IMO) in 2011 as part of the 

MARPOL Annex VI regulations and entered into force on 1 January 2013, IMO (2011). It was 

developed to promote energy-efficient ship design by setting minimum efficiency requirements for new 

ships. In essence, it serves as a theoretical CO2 emission score. 

 

The IMO introduced the EEXI as part of the same regulatory framework to extend efficiency principles 

similar to those of existing vessels. Unlike the EEDI, which applies to new ships, the EEXI establishes 

a standardized approach for assessing the energy efficiency of vessels already in operation. This is 

achieved by setting technical efficiency baselines that existing vessels must meet to comply with 

emission reduction targets, IMO (2021). 

 

EEDI and EEXI values are not publicly available but can be requested within a chartering process. 

Apart from that, an equivalent efficiency measure can be calculated according to the regulations set by 

IMO. In principle, this is done in the Existing Vessel Design Index (EVDI), a proprietary metric 

developed and used by RightShip. EVDI is fundamentally based on the EEDI concept but adapted for 

existing vessels where complete design data might not be available. RightShip uses EVDI to rate vessels 

on a carbon efficiency scale (A–E), where A represents the most efficient ships and E the least. 



 

155 

For the purposes of this study, the EEDI values used are derived based on available data, utilizing EEXI 

as a reference where necessary to maintain consistency in assessing vessel efficiency. This approach is 

conceptually similar but may not be identical to the EVDI methodology. 

 

3.3 Predictions using the Carbon Intensity Indicator (CII)  

 

Similarly to EEXI, the International Maritime Organization (IMO) adopted the Carbon Intensity 

Indicator (CII) regulations in 2021 as part of amendments to MARPOL Annex VI. Accordingly, these 

regulations entered into force on November 1, 2022, and became mandatory for all ships starting 

January 1, 2023, IMO (2022). The CII Index is calculated from a simple formula: 

 

𝐶𝐼𝐼𝐴𝑡𝑡𝑎𝑖𝑛𝑒𝑑   =  
𝐴𝑛𝑛𝑢𝑎𝑙 𝐹𝑢𝑒𝑙 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 × 𝐶𝑂2 𝐸𝑚𝑖𝑠𝑠𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟

𝐴𝑛𝑛𝑢𝑎𝑙 𝐷𝑖𝑠𝑡.  𝑆𝑎𝑖𝑙𝑒𝑑 × 𝐷𝑒𝑠𝑖𝑔𝑛 𝑇𝑜𝑛𝑛𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑉𝑒𝑠𝑠𝑒𝑙
 

 

The calculation data are reported under the IMO Data Collection System (DCS). Based on the reference 

CII value estimated for 2019 and reduction factors, the attained CII within a year is further divided into 

5 ratings from A to E based on calculated limits. Failure to meet a D or E rating imposes additional 

corrective plans for the owner in the Ship Energy Efficiency Management Plan (SEEMP). 

 

Unfortunately, IMO-DCS data are not publicly available, and owners are not sharing the attained CII 

values with charterers. When asked, owners refuse to share "entry" CII values pre-charter as the Charter 

Party CII clauses generally calculate the AER value only within the chartered period, and based on that, 

the clause is evaluated. So, no pre-entry CII value sharing is necessary in such a scenario. As the CII is 

still an operational parameter, the paper will briefly examine the benefit of including it in the pre-charter 

assessment. 

 

3.4. Empirical model using Linear Regression of Microsoft Excel 

 

Within this study, an Excel-based linear regression model to predict vessel fuel performance, measured 

as the total fuel consumption per 24 h at a speed of 11.5 kn, scantling draft, and a weather condition of 

BF4 all Dir, was developed. Linear regression is a statistical method that models the relationship 

between a dependent variable and one or more independent variables. The model assumes a linear 

relationship between fuel performance and selected vessel attributes. So:  

 

𝐹𝑢𝑒𝑙 𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 =  𝛽0 + 𝛽1 ∙ 𝑋1 + 𝛽2 ∙ 𝑋2+. . +𝛽𝑛 ∙ 𝑋𝑛 

 

• 𝛽0: 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 

• 𝛽1…𝛽𝑛: 𝑅𝑒𝑔𝑟𝑒𝑠𝑠𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠 

• 𝑋1…𝑋𝑛: 𝑆𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑣𝑒𝑠𝑠𝑒𝑙 𝑐𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠 

 

The reference dataset for the linear model had 92 bulk carrier vessels, excluding the 10 test case 

vessels of Chapter 5. The following parameters were used as vessel characteristics: 

 

• Has Bulbous Bow (Binary: 1 = Yes, 0 = No) 

• Displacement (tonnage) 

• LOA (Length Overall) (m) 

• LBP (Length Between Perpendiculars) (m) 

• Beam (m) 

• Scantling Draft (m) 

• Ballast Draft (Light) (m) 

• Deadweight Tonnage (DWT) (tonnes) 

• Vessel's Age (@Last Report) (years) 

• Main Engine Maximum Continuous Rating (ME MCR) (kW) 

• Main Engine RPM at MCR (ME RPM@MCR) (rpm) 
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These variables were chosen due to their theoretical and empirical significance in fuel consumption 

estimation. 

 

3.5. Empirical models by vessel performance service providers 

 

In recent years, companies specializing in data technology and vessel performance analytics have de-

veloped advanced fuel consumption forecasting algorithms. These models use extensive datasets, in-

cluding vessel noon reports, high-frequency sensor data, weather conditions, AIS signals, port activities, 

maintenance records, and vessel specifications. Such algorithms can predict a vessel's fuel consumption 

across various operational scenarios, even when specific vessel data is absent. As these models process 

vast amounts of data, they continuously learn and adapt, enhancing their predictive accuracy over time. 

Continuous refinement through machine learning techniques enables these models to improve accuracy 

over time, offering a more dynamic alternative to traditional static models. The model of one of these 

providers is available to the bulk carrier chartering company partnered at this study and is analyzed 

along with the other methodologies. 

 

3.6. Another potential option: EU MRV 

 

Another methodology for predicting fuel performance is based on EU MRV data as mentioned above. 

The EU Monitoring, Reporting, and Verification (MRV) system collects fuel consumption and emis-

sions data from vessels above 5,000 gross tonnages operating within the European Economic Area. The 

database has public access through https://mrv.emsa.europa.eu/#public/emission-report . It allows the 

analysis of fuel efficiency across different vessel types. A sample of the data which can be extracted 

from the web portal is shown in Fig.3.  

 

 
Fig.3: EU MRV data for one of the assessed Bulk carriers 

 

Unfortunately, EU MRV data has limitations, including availability gaps and regional restrictions. Since 

it only covers vessels operating within the EU framework, its applicability to global fleet performance 

prediction is constrained. For the bulk carrier vessels analyzed in Chapter 5 of this study, EU MRV data 

was only available for a few cases. Due to these limitations, methodologies relying on EU MRV data 

could not further be considered.
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4. Results of case study 

 

4.1. Vessels of case study and their Charter Party 

 

A case study was conducted on three sister-class groups of bulk carriers to assess the quality of different 

approaches for estimating fuel performance. Each sister class was built within a similar timeframe. The 

objective was to compare the accuracy of these estimation methods. Table I provides an overview of 

the vessels included in the case study. 

 

Table I: Overview of vessels which are part of the case study 

 
 

Fuel Performance is expressed as the total fuel consumption determined at a speed of 11.5 kn under 

weather conditions equivalent to Beaufort 4, with wind and sea considered from all directions. The fuel 

consumption figures are then compared to the performance prediction methodologies. 

 

In Fig.4, the total consumption values of the Charter Party agreement are compared to the current Fuel 

Performance. One can derive a similar conclusion as in Chapter 2.3: The total fuel consumption values 

of the Charter Party can rarely be met, and the actual fuel consumption is mostly higher.  

 

 
Fig.4: Comparison of the Charter Party figures and the current Fuel Performance 

  

Vessel Tag
LPP

[m]

B

[m]

TScant.

[m]

DWT 

[kt]

Vessel's Age 

[years]

ME MCR

 [MW]

ME RPM

[1/min]

Reference 

Speed [kn]

Fuel Performance

[t/24h] @Ref Speed, 

Tsummer, BF4 all Dir.

Pan A 222.0 32.3 14.5 81 13.4 11.0 96.0 11.5 29.4

Pan B 222.0 32.3 14.6 81 13.2 11.0 96.0 11.5 30.8

Pan C 222.0 32.3 14.5 81 12.9 11.0 96.0 11.5 27.1

Cape Old A 283.0 45.0 18.2 180 14.7 18.7 91.0 11.5 43.1

Cape Old B 283.0 45.1 18.2 180 15.8 18.7 91.0 11.5 42.2

Cape Old C 283.0 45.1 18.2 180 15.1 18.7 91.0 11.5 50.1

Cape New A 295.2 50.0 18.5 211 3.2 15.7 68.0 11.5 38.7

Cape New B 295.2 50.0 18.5 211 3.1 15.7 68.0 11.5 37.5

Cape New C 295.0 50.0 18.5 211 3.2 15.7 68.0 11.5 36.4

Cape New D 295.2 50.0 18.5 211 3.3 15.7 68.0 11.5 38.9

60.00
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4.2. Calculated EEDI vs. Fuel Performance 

 

Since several vessels in the case study are over 11 years old, not all have an EEDI figure. For those 

where the figure was absent, an EEDI was calculated using the vessels' EEXI files. The results of the 

calculated EEDI are compared to the current Fuel Performance values in Fig.5.  

 
Fig.5: Comparison of calculated EEDI and the current Fuel Performance   

 

As capacity is part of the equation, the EEDI values are comparable only to those of similar vessels. At 

the Panamax vessel group, an interesting observation can be made: The vessel with the lowest EEDI 

has a worse fuel performance than her sisters. This discrepancy is likely due to a poorer hull fouling 

condition of that vessel as compared to her sister vessels. Such operational effects are not part of the 

EEDI equation. This means that performance prediction methodologies solely based on concepts similar 

to the EEDI calculation cannot accurately predict operational performance figures for vessels highly 

impacted by a shipping company's biofouling management skills. 

 

4.3. CII vs. Fuel Performance 

 

 
Fig.6: Comparison of CII from 2013 and the current Fuel Performance   
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The CII values available, when this paper was written, are based on operational data for the year 2023. 

Some of the figures were not available to the authors. No CII value was available for the vessels “Pan 

C” and “Cape Old C”. In Fig.6, the fuel Performance for the remaining 8 vessels is shown vs. the CII. 

Overall, there is no strong correlation between the CII and the current fuel performance. One can ob-

serve that the two remaining Panamax vessels have quite different CII values but somewhat similar fuel 

performance figures. The same goes for older Capsize vessels. Most likely the root cause of the high 

discrepancy is that the vessels had quite different operational profiles in 2023. The CII rating cannot 

fully describe the Fuel Performance of a single vessel, compare, Marioth (2022).. 

 

4.4. Predictions by Linear Regression Model vs. Fuel Performance 

 

In Fig.7 the linear regression model results are compared with the observed Fuel Performance values 

of the 10 case study vessels. The model’s prediction accuracy varies across the cases, with deviations 

ranging from -9.70% to +8.67%.  

 

The linear regression model developed for this paper demonstrates a strong correlation with actual fuel 

performance, as indicated by the Multiple R-value of 0.926, showing a high degree of association be-

tween the predicted and observed values. Additionally, the R² value of 0.857 suggests that the model 

can explain approximately 85.7% of the variance in fuel performance, reinforcing its reliability in cap-

turing key influencing factors.  

 

 
Fig.7: Predicted Fuel Performance through Linear Regression vs. the current Fuel Performance   

 

Despite the strong overall performance, the prediction accuracy varies between vessels, as seen in the 

prediction error values. While some vessels show minimal deviation (e.g., 0.14%), others exhibit more 

significant discrepancies, particularly indicating potential influences beyond those captured by the 

model. Factors like hull fouling pressure and paint conditions may contribute to these variations. Over-

all, one can already come quite far with such simple models to make better decisions at the pre-charter 

assessments. 

 

4.5. Predictions of Performance Provider vs. Fuel Performance 

 

In Fig.8, the vessel performance predictions provided by the external service provider, considering un-

known vessel conditions, are compared with the observed Fuel Performance values. The results show 
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a high level of accuracy, with deviations ranging from -7.64% to +7.86% and an average prediction 

error of only -0.15%. 

 

The standard deviation (4.14%) indicates that while there is some variance in the predictions, the pro-

vider’s methodology offers a reasonable estimate of vessel performance. The relatively balanced distri-

bution of positive and negative deviations suggests that the model does not exhibit a strong bias toward 

over- or underestimation. 

 

 
Fig.8: Comparison of the predicted Fuel Performance and the current Fuel Performance   

 

Overall, these results demonstrate that the external performance provider delivers robust predictions. 

While minor variations remain inevitable due to operational and environmental influences, the pro-

vider’s methodology is a practical and data-driven resource for performance evaluation. 

 

4.6. Comparison of results 

 

The case study in this paper demonstrates that operational fuel performance of vessels cannot be reliably 

predicted using the CII or EEDI defined by IMO. The primary reasons for this are the variability in 

operational profiles and the decline in vessel performance over time, largely caused by hull fouling.  

 

As calculated EEDI and CII can only be compared in a limited way with the used measurement metrics 

of the study, they are not reviewed further. Instead, Table II shows a comparison of the other approaches 

of the study. The comparison of different fuel performance prediction methods highlights significant 

differences in accuracy and reliability. Charter Party (CP) fuel performance values tend to substantially 

underestimate actual fuel consumption, with an average deviation of -13.7% and a high standard 

deviation of 8.6%, indicating considerable variability. This makes CP values unreliable for precise 

operational forecasting. 

 

Empirical models, such as the Excel-based Linear Regression (LR) model created for the study, provide 

a more structured and data-driven approach, improving prediction accuracy. With an average deviation 

of -1.8% and a reduced standard deviation of 6.0%, the model offers a reasonable estimate, though there 

is still some scatter. 
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Table II: Overview of prediction results 

  
 

The external performance provider’s model, currently used for vessel performance monitoring, demon-

strates the highest accuracy and consistency. With an average deviation of just -0.1% and the lowest 

standard deviation of 4.1%, it delivers the most reliable fuel performance estimates, minimizing both 

bias and variability. 

 

These results demonstrate the need for structured, data-driven methodologies. While empirical models 

provide a solid alternative, the external provider’s approach proves to be the most precise. A continued 

focus on refining prediction models with real-world operational data will be essential for improving 

vessel performance assessment and decision-making in the shipping industry. 

 

5. Conclusion 

 

The bulk carriers' Charter Party and embedded legacy pseudo-methodology are potentially the main 

roadblocks to performance improvement and CO2 reduction processes. Charter Party contracts should 

include foreseen Hull & Propeller degradations over time as an immediate improvement. A very 

important process is simply missing: A high quality and scientific assessment and incentive structure 

within the Charter Party framework. Legally sound methodologies are needed in the long term to bridge 

the gap between the owner's and charterers' incentives, Bonello and Smith (2019). 

 

The situation requires charterers to carefully pre-assess vessels before the fixture and signature of the 

Charter Party contract. Providers who only assess the current performance based on technical 

parameters when the vessel was built, EEDI methodology or similar, have strong limitations as they do 

not include the impact vessel operation and hull fouling. Without professional performance monitoring 

pre-assessment, even Excel-based linear regression models to predict fuel performance yield in more 

viable estimation of fuel performance. 

 

Professional vessel performance software providers using systems based on operational data can 

provide high quality estimations of the current fuel consumption. Furthermore, the significant changes 

of hull and propeller performance over time, highlight the importance of continuous vessel performance 

monitoring for every shipping company. 
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Assessment of a Gate Rudder Performance through Full-Scale Monitoring 
 

Paolo Becchi, CETENA, Genova/Italy, paolo.becchi@cetena.it 

 

Abstract 

 

The three-year-long research EU project GATERS has been focused on the assessment of the 

performance of a new technology aimed to improve the ship efficiency, in terms of speed, fuel 

consumption, maneuverability and noise emissions. Within this project, a long monitoring campaign 

has been done to collect data concerning the ship’s performance before and after the retrofit. This 

paper summarizes the results of the full-scale trials and the voyage monitoring up to the assessment of 

the effective improvement due to the Gate Rudder adoption, passing through the description of the 

equipment and the analysis procedure used. 

 

1. Introduction 

 

An innovative new energy saving device has been studied and developed in the three years research 

project GATERS, sponsored by the EC H2020 Programme (ID:860337). The scope of this research was 

the design, the construction and the full-scale assessment of a gate rudder device on a retrofitted 5500 

DWT general cargo. The project has an official sub-license agreement with Wartsila Netherlands BV 

to utilise the Gate Rudder Patent (EP 3103715) at specific retrofit projects of vessel sizes below 15000 

DWT. 

 

In the GATERS project, CETENA leaded the team aimed to design, conduct and analyse the full-scale 

tests on the target vessel, including sea trials across the retrofit and the whole monitoring campaign. In 

detail, among the partners involved in the work package group, the on-board sea trials were under the 

responsibility of Hidroteknik (Hidroteknik yat gemi deniz yapilaritasarim teknolojileri sanayi ve ticaret 

limited), the off-board sea trials (under water radiated noise tests) were overviewed by Bureau Veritas 

(Paris) and the monitoring campaign was leaded by CETENA, that uses its own ship performance 

monitoring system for both the data collection and the results analysis, as published in the related project 

deliverable. 

 

The assessment covered the most part of the project, the testcase vessel has been equipped with a 

customized monitoring system before and after the retrofit, to collect performance data of both 

conventional rudder system (CRS) and the gate rudder (GRS). It made it possible to describe the ship 

performance about one year before and one year after the adoption of this new technology. During the 

usual ship operation, the monitoring system automatically collected data from both ship navigation 

system and specific custom sensors arranged on board by some partners of the project. For the scope of 

the monitoring campaign, sensors have been arranged on the propeller shaft, the rudder and the fuel 

pipeline through a new flow meter. All these instruments were coupled with a collection unit located 

close to the shaft and then up to the wheelhouse acquisition unit through serial connection. Further-

more, the crew has been trained to input the load conditions to monitor also the trim and the ship 

displacement. Finally, although the wind state has been acquired through ship anemometer, the sea state 

has been collected separately through a hindcast provider. The data has been saved through daily log 

files that have been checked and analysed one by one periodically. 

 

Furthermore, custom sea trials have also been conducted across the dry-dock to measure the ship 

performance in well-known conditions and in accordance with the recommended international 

procedure ISO15016, as described by Aktas et al. (2021,2023). Although the sea trials have been done 

in full ballast conditions being not possible to reach the laden condition across the drydock, the 

correlation between the monitoring collected data, the results obtained through the sea trials and finally 

the numerical predictions performed in the first phase of the project made it possible to assess the 

performance of the Gate Rudder technology with a reliable estimation of power saving. 
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1.1. The innovative technology 

 

A gate rudder is an innovative energy saving device ideated in Japan around 2010, it consists of a couple 

of twin rudders with asymmetric cross-section that are located aside the propeller, the closeness and the 

interaction between rudders and propeller generates a partial accelerating flow in between like a duct 

effect with the propeller. This phenomenon induces an additional thrust through the rudders, Sasaki et 

al. (2015). The rudders can also be controlled independently via rudder stock at the top of each, Sasaki 

et al. (2015), it provides improved manoeuvrability, and seakeeping ability, Turkmen et al. (2015). The 

system must then be considered as an equivalent propeller for which part of the thrust is generated by 

the rudders blade without any torque required at the shaft, for this reason it leads to an overall higher 

efficiency of the system respect to a traditional propeller. 

 

1.2. Feasibility studies 

 

In the last ten years, feasibility studies of this technology have been done through numerical 

simulations, model scale tests and in some case full-scale sea trials. The following table summarizes a 

brief and probably not complete description of the vessels used for the investigations done by now. 

Among all these cases, one of the more relevant applications concerns the twin container vessels Sakura 

and Shigenobu that have been respectively equipped with a conventional rudder system and a gate 

rudder system just at the ship delivery, Sasaki et al. (2019,2020). Furthermore, the bulk carrier case 

provides good indication for low-speed vessel: although the analysis is confined to feasibility studies, 

the deep numerical investigation and the model test campaigns carried out in SRC (Ship research Center 

of Japan) show good results in terms of efficiency improvement. 

 

Table I: Feasibility studies of the gate rudder applications 

Ship type name LBP VS FN Note 

  [m] [kt] [-]  

Bulk carrier  225.0 14.5 0.158 Feasibility study 

Container carrier SAKURA 101.9 15.5 0.252 CRS at ship delivery 2016 

 SHIGENOBU 101.9 15.5 0.252 GRS at ship delivery 2017 

General cargo KOHSIN MARU 68.6 12.8 0.253 Feasibility study 

   from  Turkmen et al. (2016) 

General cargo ERGE  12.0 0.214 CRS at ship delivery 2010 

GRS retrofitted 2023 

   from Koksal et al. (2024) 

  

The propulsive performance of the gate rudder technology applied on the previously mentioned ships 

are summarised in the following Table II. The author apologies for the probably not complete and exact 

data shown that has been collected from the literature available, but it is just important to show the state 

of art of the order of magnitude of the performance predicted over different kinds of ships. 

 

Table II: Propulsive performance of gate rudders 

Bulk carrier   

 7-8%  from model tests Sasaki et al. (2015) 

Container carrier   

 14% of fuel consumption saving from sea trials Fukazawa et al. (2018) 

 14% of power saving PD in calm water from sea trials Mizzi et al. (2022) 

 30% of power saving  PD in rough sea from monitoring Gurkan et al. (2022) 

 33% liter/miles consumption reduction from monitoring Sasaki et al. (2020) 

     

 PREDICTIONS   

 8-10%  from study on model 

test and CFD 

Sasaki et al. (2018) 

 Comparison with ITU measurements (model scale)  
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 1.8% PE prediction  Gurkan et al. (2022) 

 0.6% PD prediction   

     

 Comparison with HSVA measurements (model scale)  

 11% PE prediction   

 14% PD prediction   

     

 2% PD prediction in ballast condition  Celik et al. (2022) 

 6.5% PD prediction in full load condition   

 

1.3. The project’s testcase vessel 

 

In the GATERS project the assessment of the gate rudder technology has been done through the retrofit 

of a commercial coastal vessel. M/V ERGE (Ex-JOERG N) is one of eight multi-purpose dry-cargo 

sister ships, initially commissioned and owned by a German Consortium. It was designed by a German 

design firm, ABH (ABH Ingenieur Technik GMBH) and was built by the Chinese shipyard Weihai 

Donghai in 2010-2011. All the eight sister ships have been equipped with conventional rudder systems 

(CRS) with flaps (Becker type) and 5-bladed, left-handed FPP propellers, Koksal et al. (2024). In 2015, 

one of the GATERS project partners, CAPA, purchased two of these vessels named M/V ERGE, which 

was selected as the “Target Ship” for the GATERS project and her sister, M/V ERLE. After the 

purchase, M/V ERGE’s capacity increased from 4500DWT to 5500 DWT by increasing her draft by 

approximately 0.65 m without any engineering modifications to the main hull or propeller or the engine. 

Bureau Veritas (BV) approved the capacity increase calculations. The ship M/V ERGE underwent a 

series of full-scale sea trials in 2010 before it was delivered. Following her build, the initial sea trials 

were conducted in the Yellow Sea of China on February 5th and 6th, 2010, the latter two trials were 

conducted in 2023 during the GATERS project and before and after the GRS was retrofitted in January 

2023 and May 2023, respectively, Koksal et al. (2024). The main dimensions of the target vessel are 

shown in Table III. 

 

2. Monitoring System 

 

For the assessment of the gate rudder system, a monitoring system was arranged on the target vessel. 

The monitoring campaign collected the data that could lead to an accurate analysis of the ship 

performance before and after the retrofit. CETENA provided and arranged its system PM&OTE, 

developed and maintained since 90’s, Della Loggia et al. (1993), Galli et al. (2014), Becchi (2019).  

 

The monitoring system was customized and configured for the target vessel. It consisted of one rugged 

PC with a dedicated software recording the available data on board, proper hardware to acquire in-field 

signals from torquemeter, shaft RPM, rudder angle, rudder torque and through one serial server. 

Although the monitoring system was provided by CETENA, the custom sensors were supplied by other 

partners such BV (shaft and rudder) and University of Strathclyde (flow meter). The arrangement of 

these instruments was done through collaboration of all the partners involved and the kind support of 

the crew.  

 

The PC is equipped with a user interface making it possible for the crew to add additional data like 

payload, draft readings, and the weather condition observed. The PC has been arranged in the 

wheelhouse to be connected with the signals coming from the integrated navigation system and to be 

also available for the crew during the navigation. The signals monitored are: 

 

• from GPS:   date, time, latitude, longitude, speed over ground, course over ground 

• from gyrocompass:  true heading 

• from anemometer:  relative wind speed and direction 

• from echo sounder:  water depth under keel 

• from speed log:   speed through water 
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Table III: Main dimensions of target vessel M/V ERGE 

MAIN DIMENSIONS 

 

   laden ballast 

Length overall LOA [m] 89.95 

Length betw. 

perp. 

LBP [m] 84.95 

Breadth B [m] 15.40 

Draught TF [m] 6.46 2.80 

 TA [m] 6.46 3.80 

Displacement  [t] 7280 3585 

Service speed VS [kt] 12.0 

Rudder type   CR 

MAIN ENGINE PROPELLER 

Type  8L38/32A Type  FPP  

Rated power [kW] 1960 Speed [RPM] 147.25  

Rated speed [RPM] 775 direction  left  

Gear box ratio  5.263:1 Diameter [m] 3.42  

   Blade number  5  

   P/D  0.83  

   BAR  0.61  

 

The collection of the signals from all the other sensors arranged in both steering and main engine rooms 

has been done through a custom cabinet located close to the shaft, portside. The layout of the monitoring 

system used for the project is shown in Fig.1. 

 

 

 

 

Acquisition unit Cabinet 

 

 

Torquemeter Mass meter 

Fig.1: Monitoring system layout 

 

CETENA Performance Monitoring software can acquire signals with a sampling frequency of at least 

1 Hz; the effective sampling frequency of parameters from ship systems depends of course on 

throughput sentences from them. The software can average and store the acquired values with a flexible 

time interval defined by user (usually every 60 s for this kind of applications) and to save them in proper 

files. For this reason, the system has been used also for the sea trials done across the retrofit, collecting 

data every second. Fig.2 shows the user interface that can be used by the crew to take under control the 

current sailing conditions and the values acquired through specific custom sensors, like the rudders’ 

angle and the fuel consumption. Furthermore, it is also possible to record manual inputs like payload, 

fuel and estimated weather conditions that represent data that the crew was asked to input at the 

beginning of any trip. 
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The monitoring system has been arranged and cabled onboard at the beginning of the project, and it has 

been made working up to the end of the project, it has been removed some months after the project 

closure and the data file stored. 

 

3. Methodology 

 

The assessment of the gate rudder has been done through the analysis of data collected in two 

configurations, that are: 

 

• CRS, the original Conventional Rudder System for which the monitoring campaign started in 

fall 2021 after complete hull cleaning 

• GRS, the new Gate Rudder System that has been retrofitted during dry-dock from January to 

May 2023. In that occasion a complete hull cleaning has been done as well. 

 

Furthermore, it is important to highlight that retrofit did not affect only the rudder system, but the whole 

vessel stern, including new propeller, new shaft, two rudders and custom modification of the hull 

surface at the shaft exit. 

 

 
Fig.2: Long term monitoring system cockpit 

 

The assessment of the ship’s performance in its effective operability has been done through short term 

monitoring campaigns covering approximately one year for each configuration. Nevertheless, the 

collected data is affected by uncertainties being the sailing conditions not under control, so particular 

attention has been paid during the data analysis. Data were continuously recorded and averaged day by 

day. It means that a single record represents the average of the values collected during a specific time 

window in which the sailing conditions could be steady or unsteady. Furthermore, even if both the 

environmental (wind, depth, waves) and the load (displacement, trim) conditions have been 

measured/input, the effect of their related correction on the results accuracy depends on the analysis 

method. Although the assessment of the ship performance has been done through a detailed analysis of 

the data including all the reasonable corrections to improve accuracy, the obtained results can be 

characterized by approximations due to both the assumptions made and the amount and type of the data 

recorded. Furthermore, being not possible to carry out custom sea trials in laden conditions, the adopted 

procedure represents the better way to assess the propulsive performance in usual ship operating 

conditions. 

 

The adopted methodology is consistent with what is prescribed by ISO19030. Nevertheless, because 

the ISO procedure published in 2016 considers only the effects of wind and displacement, additional 

corrections have been developed consistently with ISO 15016 and ITTC 2017. Although a longer 

monitoring campaign would lead to more consolidated results, the application of the previously 
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described corrections on the data sets characterized by steady condition makes it possible to define the 

speed and power through a reduced number of records. 

 

The evaluation of the power curves has been done through the application of some filters making it 

possible to select only the recorded values consistent with specific constraints, that are: constant sailing 

conditions, weather conditions not exceeding Bft 3, displacement within 5% the reference value. The 

resulting data was then fitted through cubic polynomial curve to define the speed-power curve, as 

usually done for the power assessment, Fukazawa et al. (2018), Molland et al. (2011), Carlton (2007), 

SNAME (1988), Saunders (1956). More details about the procedure used are described in the following. 

 

Once the power curve has been computed, the assessment has been done through the performance 

comparison in the reference conditions: 

 

• computing the shaft power required by the two configurations (CRS and GRS) to sail the vessel 

at the reference speed, and then evaluating the power (and FOC) saving 

• computing the vessel speed keeping the same shaft power in the two configurations (CRS and 

GRS) and hence evaluating efficiency in terms of sailing time and fuel saving 

 

An analysis of the performance in terms of fuel oil consumption has been done starting from the 

evaluation of effective shaft power and a FOC curve that has been defined as the linear curve fitting a 

specific collected data set (4). 

 

3.1. Constant measured runs 

 

The analysis carried out on the data collected before and after the retrofit was aimed at defining the 

performance of the vessel in steady sailing conditions, excluding the effect of the weather on the 

propulsive performance as recommended by the international procedures for the ship in service, ISO 

(2016). The normative is aimed at the definition of a default method for measuring changes in hull 

and/or propeller performance of the same ship to itself over a maintenance event, that in this case is the 

rudder system retrofit.  

 

The method is based on the analysis of data collected onboard, among all the parameters monitored the 

two primary ones are the ship speed through water VS and delivered power PD that must be varied to 

cover the whole range of the ship speed and must be also constant during each data set considered. 

 

So, the first step of the analysis concerned the definition of 10 minutes long time slots characterized by 

constant sailing conditions, that are: speed, shaft rate of revolution, rudder angle and heading. The 

collected data files have been checked one by one using CETENA data analysis software, Fig.3, looking 

for reliable time slots in which the sailing conditions were constant.  

 

These time slots represent the ‘measured runs’ used for the subsequent performance analysis, and they 

are characterized by: 

 

• minimum duration equals to 10 minutes 

• constant speed over ground 

• constant rate of revolution 

• constant course over ground 

• sea state not exceeding level 3 

 

For each extracted measured run the average values of the sailing conditions have been automatically 

computed. So, each record used for the power curve computation represents the average value of 

constant sailing conditions at least 10 minutes long, so no less than 10 raw measured points. 
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Fig.3: CETENA software for monitored data analysis 

 

3.2. Environmental conditions 

 

The evaluation of the ship performance could not be carried out without some restrictions on the weather 

conditions encountered during the monitoring campaign. This constraint is due to the need to keep the 

environmental effects under control, at least as much as possible. The added resistance due to weather 

conditions far from the ideal ones can lead to an additional power needed that is not easy to be computed 

in post-processing, and it can lead to misleading results in terms of a reliable power curve. As prescribed 

by international rules, all the parameters describing the real conditions must be recorded, but only the 

data set within prescribed limits must be considered. 

 

So, the parameters describing the weather effect acting on the ship performance represent part of the 

secondary parameters recorded, that are: wind state (direction and magnitude), wave height, period and 

direction, current components and water depth. Although the wind state and the water depth could be 

easily measured through the ship’s usual instrumentations, for the wave and current data a practical 

solution has been agreed and adopted. At the beginning of the project the environmental conditions 

were intended to be measured through specific sensors that would be arranged on the vessel for the 

whole monitoring campaign periods, but the technical solutions originally considered looked to not fit 

the expectation required for the data analysis. For this reason, a collaboration with a specific hindcast 

data provider has been established. Experience with this kind of data and in the same kind of activity 

has been done in the past ten years by CETENA in CRS, www.crships.org, activities with reliable 

results confirmed by the community partners. 

 

LaMMA, Environmental Monitoring and Modelling Laboratory for the Sustainable Development, is a 

public consortium between the Tuscany Region and the Italian National Research Council and it has a 

specific department for Oceanography. This sector includes activities related to observation systems 

and modelling of the state of the sea and coastal dynamics, both physical and biogeochemical, to support 

activities for the protection of the environment and marine ecosystems, safety at sea and in particular 

navigation, monitoring, management and protection of the coastal strip. 

 

The collaboration between CETENA and LaMMA Consortium included an agreed procedure for the 

data transferring leading to a quite easy and quick procedure to equip the monitored collected data with 

the weather conditions. So, stating the weather conditions encountered during the monitoring campaign, 

it was possible to: 
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• filter the collected data to consider and analyze only that fulfilling the environmental conditions 

prescribed by international rule 

• correct the ship performance as measured to consider the effect of the weather conditions on 

the propulsive performance itself. 

 

Nevertheless, being the recommended procedure, ISO (2016), just limited to the wind correction at the 

moment of the project, some further corrections have been made consistently with ISO (2015) to make 

the evaluation as accurate as possible. 

 

4. Evaluation of FOC curve 

 

To evaluate the relationship between shaft power and the main engine consumption, the data collected 

during the monitoring campaign has been used to define the fitting curves between the FOC and the 

power measured at the shaft. 

 

The data used cover the 6 months from the hull cleaning at the beginning of the project for the CRS 

configuration and the first 3 months after the dry-dock for the GRS. 

 

 

Fig.4 shows the fitting curves obtained for the two conditions: CRS (red) and GRS (blue). There is a 

gap between the two conditions across the dry-dock, that can be estimated approximately in 3-4% 

probably due to maintenance activities on the main engine during the dry-dock, the shaft and propeller 

retrofit and/or to the differences in hull and propeller cleaning: only underwater cleaning has been done 

at the beginning of the project while during the retrofitting dry-dock hull cleaning and coating has been 

carried out. The FOC-Ps curve is just needed to evaluate the FOC value starting from the final speed-

power curves in the two conditions, providing the order of magnitude of the fuel consumption can be 

expected.  

 

4.1. Sea trial across the retrofit 

 

In the two configurations, custom sea trials have been conducted consistently with recommended 

international procedure for the speed & power assessment of a vessel, ISO (2015). Nevertheless, for a 

cargo vessel like the project one, the load condition that can be reached at the dry-dock is usually very 

far from the reference one, that is the full load. Only a full ballast load condition could be used, although 

inappropriate to represent the usual sailing condition because of the trim and the absence of load. So, 

the results obtained have been compared with those obtained from numerical simulations carried out in 

the sea trial condition, just to assess the accuracy of the numerical approach.  

 

 
Fig.4: Evaluation of the power vs FOC curve 
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Although the original plan for the sea trial with CRS concerned the hull cleaning before the tests, the 

drydock schedule was not available stating the overbooking due to the backlog of COVID-19-related 

ship maintenance activities. Then the sea trials were done with the hull affected by the medium to heavy 

slime conditions seen through underwater inspection and a survey during the retrofitting dry-dock. 

During the retrofit, the hull was cleaned and coated. High value of roughness (300 m) has been 

measured, it is considered to be due to the fact that the hull was not shot-blasted during the three coating 

campaigns over the previous 13 years. It is the reason for the low performance measured in comparison 

with the sea trial at the ship delivery, Koksal et al. (2024). 

 

4.2. Fuel consumption 

 

The assessment of ship performance could not be done simply through the usage of consumption data 

because the measured values must be accurately checked and filtered to not include values concerning 

unsuitable sailing conditions, and then to avoid misleading conclusions. Although fuel consumption is 

related to the power delivered by the engine and then to the propeller, the performance of the ship 

through the water must be not confused with the engine performance. The data collected during a 

monitoring campaign covers all the possible situations in which the vessel is asked to sail, good and 

weather and depth conditions, maneuvering, anchoring, berthing and cruise conditions. In all these 

situations, fuel consumption can present different values at the same power at the shaft. Furthermore, 

the mechanical efficiency in the engine room as well as physical characteristics of the fuel can modify 

the recorded consumption. 

 

The reason of the possible low accuracy obtained using only the FOC values can be explained through 

a specific example, using the data collected in June 2023 and after the retrofit, in particular paying 

attention to what happened on June 9th when the vessel was sailing from Italy to Greece in reduced 

load condition (5100 t) because in this case the ship had to operate in particular prescribed conditions. 

In fact, on that day the vessel was moving from Tyrrhenian Sea to Ionian Sea passing through the strait 

of Messina. Fig.5 shows the track covered by the vessel in that day overlapped with the bathymetric 

curves.  

 

 
Fig.5: Ship track on 2023 June 9th (GRS) 

 

Fig.6 shows the whole amount of data collected in June 2023 (gray points) in terms of FOC vs shaft 

power, the black points represent the data recorded on the day considered. It can be noted that there are 

some points located far from the line fitting the most part of the data, especially those highlighted by 

the two arrows. The behavior of these values is not due to neither a malfunction of the collection system 

nor the sensors, but it’s just due to the sailing conditions that was not constant. 

 

Fig.7 shows the data collected on the considered day is shown; the diagram represents: 
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• Shaft power (averaged over 1 minute) 

• 3FOC (averaged over 1 minute) 

• Rudder angles (maximum and minimum values) 

• Speed over ground (averaged over 1 minute) 

• Torque (maximum and minimum values) 

• Rate of revolutions (maximum and minimum values) 

 

 
Fig.6: Shaft power vs FOC measured in June 2023 

 

As highlighted by the colored boxes across 14:02, the FOC has an increase of ~5% while the shaft 

power and the vessel speed are constant. Furthermore, moving up to the end of the day, after 14:02 the 

spread of the FOC values increases while the power curve looks still constant. 

 

 
Fig.7: Data collected on 2023 June 9th  

 

Other considerations can be made considering the highlighted time stamps defining specific conditions 

under which the ship sailed to pass the strait. The conclusion raised from this analysis is that fuel 

consumption does not represent properly the performance of the vessel, especially if no filter is used to 

group data related to well defined conditions. 

 

The relationship between fuel consumption and shaft power is linear when the ship is in unsteady 

conditions, that means maneuver, speed increase or decrease, navigation in constrained area. Otherwise, 

when the ship is sailing in constant conditions, that means at fixed heading with constant speed, the 

relationship between FOC and power looks to be not linear: for the same power, different values of 

FOC have been noticed. This is due to the need to keep the power constant being the ship already sailing 
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at the desired speed: the consumption needed to reach a vessel speed is higher than that required to keep 

that speed constant, once it has been reached. 

 

Nevertheless, a rough indication of the order of magnitude of the performance increase obtained through 

the measured FOC values was done as well. 

 

5. Performance assessment 

 

The evaluation of the speed and power curves have been computed as previously described, considering 

the data sets extracted through the analysis of the whole amount of collected data. 

 

In all cases, the measured runs considered have been corrected to consider the effect of load and 

environmental conditions on the speed-power relationship. Then the related curves have been obtained 

fitting the resulting values with a cubic curve. In the following, the obtained results are shown; 

furthermore, in the next section the agreement of the adopted methodology with the data collected 

during the sea trial after the retrofit is shown.  

 

The results presented are related to the expected ship performance in ideal conditions (or as close as 

possible), in terms of speed and power as recommended by ISO (2015) and ISO (2016). 

 

5.1. Ballast condition 

 

The methodology used for the analysis of the monitored data has been applied also in ballast conditions, 

just for the GRS for which data was available. The scope of this check was just the assessment of the 

methodology through the comparison with the sea trials results. Fig.8 shows the comparison between 

the model scale prediction (black line), the sea trials curve (red line) and the power curve obtained 

through the monitoring campaign. The curves look to be in good agreement, especially considering the 

usual cruise speed of the vessel not exceeding 10.5 kt. Fig.9 shows the comparison between full ballast 

curves for CRS and GRS, defined through the sea trial results.  

 

 
Fig.8: GRS in ballast condition: comparison between sea trials results, model test data and 

monitoring curve 

 

In the following, the performance measured during the sea trials across the retrofit is analyzed through 

comparison of the CRS and the GRS for two conditions: at the same speed and with the same shaft 

power. Although consistently with what prescribed in ISO (2015), the sea trials with CRS have been 

carried out in not ideal conditions and for this reason the results have been corrected to exclude the 

environmental effects on the performance. It must be considered that during the sea trial the load (and 

trim condition) was quite far from that characterizing the full (design) one, in particular: 
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Fig.9: Performance assessment and comparison between CRS and GRS in sea trial condition 

 

Table IV: Full ballast condition (sea trial) 

LOA 89.95 m   T 3.300 m 

LBP 84.95 m   TF 3.800 m 

B 15.40 m   TA 2.800 m 

      -1.000 m 

      3 585 t 

 

5.2. Full load condition 

 

The full load condition (7500 t) has been analyzed only through the data collected during the monitoring 

campaign because it was not possible to proceed with S&P sea trial at full load. Nevertheless, the curve 

obtained has been compared to the predicted one obtained through the model scale test carried out for 

the GRS condition. Good agreement was found between the curves computed (red: raw data, blue: 

corrected data) and the model scale results, Fig.10 (right). 

 

  
CRS GRS 

Fig.10: Full load condition – fitting curves for CRS and GRS 
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extracted from the amount of the collected data and referred to constant sailing conditions. The approach 

is like that used for the official sea trial in which the ship performance is measured over 10 minutes 

long runs at constant speed, route, shaft speed. These data sets have also been corrected to remove the 

effect of the weather conditions on the propulsive performance. The evaluation of the S&P is based on 

the usage of a reduced amount of data (abt 70 for CRS and abt 50 for GRS), representing well 

established and constant sailing conditions as close as possible to the ideal ones. So, the amount of data 
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used is considered enough to provide reliable results, taking also into account that each single record 

used represents the average value of abt. 10 value collected by the monitoring system. Nevertheless, 

the most part of the data computed is mainly related to the usual cruise conditions adopted by the ship, 

and hence close to the reference speed that is around 10 kt. Furthermore, the correction methodology 

has been developed in the more accurate way possible stating the available data, and the points 

computed are mainly located around specific points even if others look to be far, especially for the CRS.  

 

Fig.10 represents the results obtained through the analysis previously described, where: 

 

• the red points represent the measured run results extracted from the whole monitoring data set 

• the blue points represent the measured run results in ideal conditions, and hence the corrected 

ones 

• the solid curves represent the cubic fitting curve representing the raw value (red) and the cor-

rected one (blue) 

 

It can be noted that: 

 

• the cloud of the points computed is focused on the usual sailing conditions, especially for the 

GRS 

• some points are far from the final curves, it can be due to the uncertainty of the collected data 

(mainly trim and displacement) and to the correction formulation used, although as accurate as 

possible 

• the curves obtained for the GRS are close to the base line (black one), that represents the results 

obtained from the model scale 

 

Furthermore, the following aspects must be considered: 

 

1. the evaluation of the full load condition curves is based on all the available data for which 

the displacement is within ±5% of the reference value, as required in ISO (2016), that is in 

the range: 7125-7875 t (reference value = 7500 t).  

2. the analysis adopted does not include any correction for the trim, that depends on what has 

been input by the crew and it is not the same for the data used for CRS and GRS. It is 

expected the trim effect can affect the points cloud spread. For the load condition, the trim 

values are given in Table V. 

 

Fig.11 shows the resulting curves obtained for both CRS and GRS in full load and ballast (trial) 

conditions, excluding the environmental effect. 

 
Fig.11: S&P performance in full and ballast condition, CRS vs GRS 

 

Table V: Trim in full load condition 
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 TRIM (TF-TA) 

 min max 

CRS -0.800 m -0.500 m 

GRS -0.500 m -0.150 m 

 

5.3. Comparison at the same speed 

 

Once the power curves have been computed for the two rudder systems, the first investigation of the 

power saving improvement has been done considering the CRS and the GRS at the same speed, to 

assess the performance of the GRS in terms of power saving. The ship speed considered is that 

performed by the vessel with CRS in usual operating conditions because it represents the matching 

point between propeller and engine at maximum continuous rating, covering the most part of the 

sailing time monitored. The results obtained are shown in Fig.12. Starting from the usual full load 

sailing condition for the CRS, it can be noted that the adoption of GRS technology can lead to a huge 

shaft power reduction abt. -25%. Nevertheless, it must be reminded that this comparison is 

overestimated because of the initial CRS conditions. As introduced, the original configuration was 

affected by some modifications that obviously lead to a reduced propeller efficiency: in 2015 the 

ship capacity was increased from 4500 DWT to 5500 DWT through the increase of the draft (0.65 

m) without any modification to hull, propeller or engine, Koksal et al. (2024). Furthermore, the 

original propeller was cropped during the initial trials to reduce the torque, so that it would match 

the power rating of the main engine, although no clear evidence existed, Atlar et al. (2024). So, 

stating that in terms of efficiency the design of the propulsion system of the M/V ERGE at the 

beginning of the project can be considered lower than the original, with the propeller not modified 

and designed for a reduced full load condition. This is the reason the power reduction computed 

through monitoring campaigns is considered overestimated; consequently, the comparison with the 

result obtained through the twin container vessels, Sasaki et al. (2019), that equals to 14% power 

reduction, looks more consistent.  

 

 

VS = 9.2 kt  

    

    

PS= -244 KW -25.2% 

FOC= -63 Kg/h -29.1% 

    

dist= 0.0 nm daily 

time= 0.0 h daily 

FOC= -1.5 t daily 

    

Fig.12: performance comparison at same speed in full load condition 

 

The analysis was extended to the evaluation of FOC predictions, that shows -29% in Fig.12, but the 

same considerations can be extended to the fuel consumption reduction, including the gap observed 

between the two FOC curves, that is 3-4%. Nevertheless, it must be considered that this efficiency 

improvement could be only a virtual one and not feasible, because the reduction of power requirement 

at the shaft could not be suitable for the engine, that is usually designed to work at the NCR (nominally 

85% MCR). A wide modification of the propulsive point of the engine can affect both the efficiency 

and the mechanics of the engine, with increased maintenance costs. So, this result leads to assessing 

that a retrofit aimed at the gate rudder adoption makes it possible to derate the engine and then design 

the propulsion system at a lower power point keeping the usual cruise speed. 

 

5.4. Comparison at the same shaft power 
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The second phase of the assessment consists of the evaluation of the GRS performance keeping 

constant the same shaft power that was set during the usual CRS operations. The decision to use this 

specific propulsive point is related to the engine’s continuous rating of the vessel as it was during 

the project. As described before, because of modifications done on the vessel load and on the original 

propeller geometry and considering that the hull was not shot-blasted in the three coating campaigns 

over the previous 13 years, the propulsive points used in CRS operations are surely the more relevant 

for the engine behavior. So, the prediction has been made fixing the reference shaft power and 

looking at the GRS improvement in terms of ship speed. At the same delivered shaft power (961 

kW, that is the required power to sail at 9.2 kt in CRS condition), the gate rudder can provide a speed 

increase abt. 0.9 kt, Fig.13. Furthermore, the advantage of using the GRS (on M/V ERGE at NCR) 

can lead to save 2 hours per day, and then to a couple of advantages: the former is the fuel saved 

because of both the reduced sailing time and the propulsive efficiency of the GRS itself respect to 

the CRS, the latter is represented by the sailing time saved in terms of ship operability. From this 

point of view, it is not possible to estimate a general indication of the increased performance, because 

it depends on the type of vessel and its operability, but the possibility of reducing the trip duration 

at the same shaft power implies advantages in terms of ship management. Obviously, the 

consideration done for the constant speed assessment about the CRS propulsion system efficiency 

decrease is valid as well. 

 

These results match with the feedback received from the captain in Livorno (ITA) on 2023 

September 2nd, that is: “the speed increased from 9.2 kt to 10.0 kt, every day we put two hours saved 

in the pocket”. 

 

 

PS = 961 KW  

    

    

VS= +0.9 kt  

FOC= -14.4 Kg/h -6.6% 

    

dist= 22.5 nm daily 

time= 2.2 h daily 

FOC= -0.8 t daily 

    

Fig.13: performance comparison at same shaft power in full load condition  

 

6. Assessment through FOC 

 

As previously described in (3), because of the uncertainty of the relationship between the fuel 

consumption and the ship speed/power the collected data could be used only for a rough estimation of 

the performance assessment, that is described in this section. 

 

The deep investigation done on the monitored data showed that the assessment of the retrofit cannot be 

done accurately using the measured values of fuel consumption. The correlation between ship position, 

maneuvering, speed and fuel consumption showed one more time that the performance of the ship from 

the hydrodynamic point of view (and then speed and power) are not strictly related to the machinery 

performance (fuel consumption). At the power level on the shaft, different fuel consumptions were 

measured because of local and not predictable sailing conditions, it is highlighted especially when the 

ship is arriving or departing: the consumption measured to reach the same speed looked different. 

Stating that, although for a rough estimation, it is important to use the fuel consumption values in the 

better way, without any scaling procedure up to reference conditions (speed and/or displacement) being 

the scaling law not consistent with the performance of the engine. In the case of the target vessel, for 
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example, the fuel measured at the same power represents the continuous rating of the engine during 

usual operation, so the evaluation of a predicted consumption with the CRS at the same speed of the 

GRS leads to a not reliable and then misleading conclusion, being the engine not able to operate in that 

conditions. 

 

Usually, the Admiralty coefficient is adopted for power correction and/or prediction, considering 

different speed and displacement, but although a useful criterion, is a somewhat ‘blunt instrument’ when 

used as a performance criterion since it fails to effectively distinguish between the engine and hull-

related parameters. The same is also true for the alternative version of this equation, termed the fuel 

coefficient, in which the shaft horsepower (PS) is replaced with fuel consumption, Carlton (2007), 

Molland (2008), Whipps (1985). for example, attempted to split the overall performance of the vessel 

into two components – the responsibility of the engine room and the responsibility of the bridge watch-

keepers: 

 

K1 – nautical miles/tonne of fuel (overall performance) 

K2 – metres travelled/shp/h (navigational performance) 

K3 – grams of fuel/shp/h (engine performance). 

 

In order to reduce the effect of the data spread as observed in (3), the data collection has been analyzed 

using a specific custom parameter derived from the carbon intensity indicator (CII index) prescribed by 

IMO (2021), being related to the K3 previously described. As is known, the CII coefficient is computed 

as the ratio of the total mass of CO2 emitted to the total transport work, that is the product of the ship’s 

capacity and the distance travelled in a given calendar year: 

 

𝐶𝐼𝐼𝑠ℎ𝑖𝑝 =
𝑀𝐶𝑂2

𝐶∙𝑑
  (1) 

 

• 𝑀𝐶𝑂2
 is the total mass of CO2 emitted and can be computed through the total mass of fuel 

consumed and the CO2 mass conversion factor for fuel oil type: 𝑀𝐶𝑂2
= 𝐹𝐶 ∙ 𝑐𝐹 

• 𝐶 is the ship’s capacity, for general cargo ships it represents the deadweight tonnage 

(DWT =  - LWT) 

• 𝑑 is the total distance travelled in nautical miles 

 

In order to simplify as much as possible the analysis of the data collected, a further parameter has been 

defined to provide an indication of the fuel consumed during the navigation for each data recorded, 

excluding any kind of scaling or further computation that, stating the uncertainty shown in 4.2, could 

lead to misleading results. 

 

So, starting from Eq.(1), and considering that 

 

𝑀𝐶𝑂2

1  mass of CO2 emitted during a trip long a specific time interval 𝑑𝑡  

𝑀𝐶𝑂2

1 = [𝐹𝐶𝑂 [
𝑘𝑔

ℎ
] ∙ 𝑐𝑓 [−] ∙ 𝑑𝑡] being FCO the average fuel oil consumption measured in the 

time interval 𝑑𝑡 

𝑑1  distance covered during the time interval 𝑑𝑡 in constant sailing condition 

𝑑1 = 𝑉𝑆 [
𝑛𝑚

ℎ
] ∙ 𝑑𝑡 

∆ ship displacement  

 ∆= 𝐿𝑊𝑇 + 𝐷𝑊𝑇 

𝑑𝑡 time step 

 

the CII coefficient can be reformulated for a specific sailing time step as follows 
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𝐶𝐼𝐼𝑠ℎ𝑖𝑝
1 =

𝑀𝐶𝑂2

1

𝐶 ∙ 𝑑1
=

[𝐹𝐶𝑂 [
𝑘𝑔
ℎ

] ∙ 𝑐𝑓 [−] ∙ 𝑑𝑡]

(∆ − 𝐿𝑊𝑇) ∙ 𝑉𝑆 [
𝑛𝑚
ℎ ] ∙ 𝑑𝑡

=
𝐹𝐶𝑂 [

𝑘𝑔
ℎ

] ∙ 𝑐𝑓 [−]

(∆ − 𝐿𝑊𝑇) ∙ 𝑉𝑆 [
𝑛𝑚
ℎ ]

 

 

𝐶𝐼𝐼𝑠ℎ𝑖𝑝
1 =

𝐹𝐶𝑂 ∙𝑐𝑓 

(∆−𝐿𝑊𝑇)∙𝑉𝑆
[

𝑘𝑔

𝑡∙𝑛𝑚
] (2) 

 

As previously described, this real-time specific carbon intensity indicator makes it possible to put in 

relationship the fuel consumption with the performance (speed) and the load conditions (displacement), 

avoiding any manipulation of the consumption values to referred it at a different and referred power 

point/ship speed. Nevertheless, although the formulation is quite simple, it must be considered that the 

knowledge of the right value of both conversion factor and LWT is not relevant for the scope of this 

work, and they could be ignored leading to a simpler formulation, that is: 

 

𝑡𝑚𝑙 = 1000 ∙
𝐹𝑂𝐶

∆∙𝑉𝑆
 (3) 

with 

• 𝐹𝑂𝐶 is the fuel flow that is the fuel consumption over one hour sailing at the same condition 

[kg/h] 

• 𝑉𝑆 is the ship speed and represents the distance covered in one hour sailing at the same 

condition [kt] 

• ∆ is the total displacement of the vessel, as declared at departure [t] 

 

The tml coefficient represents the amount of fuel needed to move 1 ton over 1 nautical mile, and hence 

it is related to the speed usually used for the two configurations. It represents a fuel indicator describing 

the ship as used by the crew, in more efficient ways with both CRS and GRS and consistently with the 

operating needs.  

 

Fig.14 shows the distribution of the tml (fuel tons per mile-load) for the two configurations (CRS and 

GRS), considering the data collected in the following periods: 

 

• CRS:  from 05/12/2021 to 25/09/202 

• GRS:  from 06/06/2023 to 19/11/2023 

 

Data has been filtered to consider only the propulsive conditions related to the usual continuous rating 

of the engine. So, consistently with the results obtained in the performance results (see ch.5.4), the 

assessment through the fuel consumption has been done considering all the measured records close to 

the nominal continuous rating of the two configurations previously obtained, that are: 9.2 kt for CRS 

and 10.1 for GRS at full load. The filters applied are related to displacement (±5%), ship speed (±0.5 

kt). The threshold applied on the ship speed (1 kt across the reference value) is due to the need to exclude 

not relevant values for CRS, being its reference speed (9.2 kt) close to slow steaming condition. The 

comparison has then been done using abt. 6 thousand values for CRS and 9 thousand for GRS. 

 

In the diagram, the tml coefficient is plotted referred to the true wind magnitude, as computed through 

the apparent one measured onboard. Furthermore, the wave height and sea state curves are plotted to 

describe the weather conditions as they can be expected to be stating the Beaufort scale definition and 

the over mentioned true wind magnitude as computed. The charts could not be deeply accurate but 

provide an important indication that is: the performance increase due to the adoption of the GRS 

technology looks to be constant over the true wind, and hence the weather conditions encountered. In 

quite condition (true wind close to zero) the values converge on the average values, while increasing 

the weather condition the spread of the point plotted changes because of the sea state and wind 

encountered, even if the GRS values vary more than the CRS ones.  

 

Although the reduced spread of the measured values, the consumption of the two configurations is quite 
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clear and gathered around the average values, represented by the dotted red and blue lines. Nevertheless, 

apart from the average values it can be noted that the two configurations show another leaning, that in 

this case are shown by yellow and light blue dotted lines, closer than the average values. 

 

In conclusion, the diagram shows the assessment computed through the measured fuel oil consumption, 

considering the NCR condition usually adopted by the owner before and after the retrofit in full load, 

as described in ch.5.4. The measurements have been averaged providing a gap equal to abt. 17%, but 

different leanings that can be noticed in the points distribution showing a difference abt. 12%. So, as 

anticipated and previously described in ch.4, the assessment carried out through fuel consumption 

cannot be accurate enough to provide a reliable indication, contrary to what done through the power 

analysis done. Nevertheless, a fuel consumption reduction due to the GRS retrofit cannot be neglected 

and looks really promising. 

 

 
Fig.14: tml vs espected sea state condition 

 

7. Conclusions 

 

The EU project GATERS had the scope of assessing the performance of a new technology aimed at 

improving ship efficiency, in terms of speed, fuel consumption, maneuverability and noise emission. 

The project was centered on the design, construction and retrofit of a test case vessel, the general dry 

cargo M/V ERGE.  

 

One of the key activities done was the monitoring campaign that covered the most part of the project, 

before and after the retrofit, and that was aimed at collecting the navigation data to be used for the 

assessment of the GRS performance. 

 

This paper describes the results obtained through the monitoring campaign, in accordance with what is 

prescribed by the international procedures, that are ISO and ITTC publications. The methodology 

proposed has been improved with some specific formulations that are not included in the release of 

these procedures. The analysis led to identify the vessel performance in conditions as close as possible 

to the ideal ones as recommended by the standard methodologies.  

 

The following main conclusions can be summarized: 

 

● the principle on which the gate rudder is based on generates additional thrust on the rudder 

blades, without any extra torque at the propeller shaft. For this reason, at the same delivered 

thrust of a CRS the gate rudder has a higher propulsion efficiency  

● the results obtained from the M\V ERGE are really promising, although the CRS condition was 

affected by previous modifications at the original hull and propeller. This leads to considering 
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the results being overestimated, even if still good and promising. 

● the GRS retrofit can be used for a shaft power reduction or a vessel speed increase, in former 

case the engine must be derated to optimize its efficiency, in the latter the sailing time is hugely 

reduced. 

● The assessment through fuel consumption cannot be done accurately and without special care 

in filtering the data and avoiding any scaling law. The proposed fuel parameter (tml) is con-

sistent with what suggested in literature, and it shows a not neglectable fuel saving inde-

pendently from the sea state encountered, over the whole monitored period and for the usual 

continuous rating conditions adopted by the crew before and after the retrofit. A detailed FOC 

reduction cannot be determined being the fuel consumption related to the performance of the 

engine and then not directly to the ship efficiency. Nevertheless, the results obtained just for 

the target vessel (M/V ERGE) show that it is possible to predict fuel saving in the range 12-

17% at the NCR, full load. 

● the more relevant improvement due to GRS application is represented by the speed increase, 

considering the same shaft power of the CRS cruise conditions. In this scenario the vessel can 

save significant sailing time, that if compared with the CRS implies economic advantages like 

the reduction of fuel consumption and the improvement of the whole ship’s operability. 
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Abstract 

 

Marine biofouling, the accumulation of microorganisms and organisms on vessels’ hulls, significantly im-

pacts vessel performance. According to IMO, proactive cleaning is the periodic removal of microfouling 

on ships’ hulls to prevent and minimize attachment of macrofouling. Jotun, a leader in hull performance, 

has been one of the first movers in this area with Hull Skating Solutions, offering an always clean hull 

combining robotics, antifouling and active hull condition monitoring. This paper will delve into key com-

ponents of the solution, discuss how data are used in order to monitor and optimize proactive cleaning 

operations and through real-world case studies and in-service performance data demonstrate the signifi-

cant impact on proactive cleaning on fuel efficiency, environmental sustainability and overall vessel per-

formance. 

 

1. Introduction 

 

Over time, the buildup of biofouling significantly impacts vessel performance, leading to increased fuel 

consumption and a larger environmental impact Fig.1, GIA (2021). To address this, ship operators apply 

hull coatings with anti-fouling properties. However, these coatings may not always provide optimal protec-

tion due to varying operational conditions or extreme fouling pressure that exceeds the coating’s tolerance. 

 

 
Fig.1: Impact of biofouling on Greenhouse Gas (GHG) emissions, GIA (2021) 

 

Several factors can negatively affect hull performance, especially when speed, inactivity periods, and water 

temperature fall outside the parameters used to specify the coating. For example, bulk carriers, tankers, and 
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general cargo ships often remain in ports for extended periods. Additionally, some vessels may face delays 

in berthing due to neap tides. In such cases, shallow waters and temperate environments can accelerate 

growth of biofouling, posing regular challenges for many shipowners. 

 

According to the IMO's 4th GHG emissions study, IMO (2020), international shipping emitted approxi-

mately 919 million tons of CO2 and 21 million tons of other GHGs (including methane, Nox, and SOx) in 

2018. The study indicates that 9% of these emissions were due to biofouling, suggesting a potential annual 

reduction of 83 million tons of CO2 and around 2 million tons of other GHGs. These findings align with 

other studies, such as the Clean Shipping Coalition's submission to the 63rd IMO Marine Environment 

Protection Committee meeting, CSC (2015). 

 

For ships experiencing higher biofouling pressure, the additional fuel consumption due to biofouling likely 

exceeds the 9% average for all ships, indicating significant improvement potential. 

 

Besides applying a fresh coating during dry-dockings, hulls and propellers may occasionally be cleaned in 

water while in service. This reactive cleaning approach typically occurs when heavy biofouling causes a 

measurable performance loss. Modern performance monitoring software can measure efficiency loss due 

to degrading hull performance, prompting for cleaning. However, by this stage, fouling is already a signif-

icant issue. 

 

Traditional cleaning, performed manually by divers, remains common but faces increasing scrutiny. While 

effective at removing biofouling, this labor-intensive and costly process can be challenging to schedule and 

may lead to off-hire time due to unavailability of divers and necessary logistics. Moreover, manual cleaning 

often damages the coating (Fig.2, right), leading to accelerated growth of biofouling shortly after. Environ-

mental concerns also arise, as cleaning can release aquatic invasive species and eroded coating materials 

into the water column (Fig.2, left), harming local ecosystems. Consequently, port authorities have become 

more restrictive on in-water cleaning, complicating adherence to IMO’s biofouling guidelines. Addition-

ally, manual cleaning poses significant safety risks to divers, with injuries and fatalities reported annually. 

 

    
Fig.2: Traditional cleaning releasing fouling and paint particles (left); resultant paint damage (right) 

 

Robotic cleaning, using autonomous or remotely controlled robots, offers an alternative for hull cleaning, 

with various emerging solutions of differing maturity Bertram, (2021). Many newer robots can capture 

removed coating and biofouling for proper disposal in port. However, most current cleaning technologies 

are reactive, designed for use once biofouling has already become a significant problem. 
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2. Proactive cleaning and the Jotun Hull Skating Solution 

 

To combat biofouling and address the concerns of port authorities regarding the release of invasive species, 

Jotun has adopted proactive cleaning through its innovative Hull Skating Solutions (HSS). Proactive clean-

ing, sometimes also referred to as grooming, has been increasingly advocated, e.g. Hunsucker et al. (2018), 

Swain et al. (2020). Jotun has been active in promoting a corresponding standard for in-water cleaning, 

Oftedahl and Skarbø (2021), Oftedahl et al. (2022), Skarbø (2022).  

 

Table I: Fouling rating as per IMOs Biofouling Management Guidelines 

 
 

Proactive cleaning involves the removal of biofouling at its early stages, specifically before it progresses to 

the macro-fouling stage. According to the fouling rating system outlined in Table I of the IMO’s biofouling 

management guidelines IMO, (2023) this corresponds to a fouling rating of 1. This proactive approach 

entails regular hull cleaning while the biofouling is still in the microfouling stage. By removing biofouling 

at this early stage, significant performance impacts can be mitigated, and the capture and collection of 

biofouling waste may be not necessary. Importantly, early-stage biofouling can be effectively removed with 

small shear forces, thereby preventing damage or erosion of the hull coating, preserving its integrity, ex-

tending its lifespan, and reducing the need for frequent re-applications. 
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2.1. Solution elements 

 

Jotun’s Hull Skating Solutions (HSS) combine five elements, Fig.3, addressing technical, operational and 

commercial issues: 

 

 
Fig.3: The five elements in the Hull Skating Solutions 

 

• High performance coating – Jotun’s SeaQuantum Skate coating was specifically developed to 

optimize performance in conjunction with the robotic cleaning technology of the HullSkater robot. 

The silyl-acrylate based coating is designed to withstand repeated mechanical contact with the spe-

cially designed proactive cleaning brushes without experiencing erosion. 

 

• Proactive condition monitoring – This is an essential component of predictive hull maintenance, 

enabling the HullSkater to operate when it is most needed. Jotun’s in-house data scientists and 

marine biologists have developed an algorithm predicting when fouling start to occur on the ves-

sel’s hull. This enables the Skate Operator to appropriately time the deployment of the system. As 

part of the monitoring, vessel performance is analyzed and document using the ISO 19030 standard 

for hull and propeller performance, ISO (2016). 

 

• Inspection and proactive cleaning – The HullSkater is the first robotic device specifically de-

signed for proactive cleaning, Fig.4. It has high inspection and cleaning capabilities while effec-

tively removing biofouling without damaging the anti-fouling coating. The HullSkater is always 

kept onboard in a specially designed in-rail station, Fig.5, with launch and recovery ramp. This 

ensures constant availability for use whenever the ship is in port or at anchorage. The ship’s crew 

can easily launch and retrieve the device, Fig.6. 

 

• High-end technical service – HSS includes highly skilled coating advisors who ensure proper 

coating application of the high-performance coating, including a comprehensive regime for meas-

uring and documenting the quality of the application process. Every HSS delivery is overseen by a 

certified project manager, who monitors the application process, and ensures smooth installation 

and setup of the robotics. Once launched, the HullSkater is remotely operated by dedicated Skate 

Operators from Jotun, Fig.7. 

 

• Performance and service level guarantees – The confidence in Jotun’s Hull Skating Solutions 

allows us to offer performance and service level guarantees fitting the needs of the most challenging 

operations. 
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Fig.4: HullSkater robot 

  

  

Fig.5: HullSkater in-rail station Fig.6: HullSkater being launched 

 

 
Fig.7: Remote control of HullSkater 
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2.2. How it works 

 

Jotun Hull Skating Solutions is installed on the vessel at the new build or dry dock yard and remains on 

board and in operation all through the drydocking cycle, Fig.8. 

 

 
Fig.8: How it works 

 

• Drydocking: During drydocking, a certified Jotun Project Manager oversees the painting process 

and is responsible for installing the HullSkater and the Skate Station. 

• Monitoring: In addition to performance monitoring adhering to ISO 19030 standard, a fouling 

prediction algorithm is deployed to predict the probability of fouling based on operational areas 

and ship operational parameters. The algorithm also identifys when the Skater requires deployment 

for inspection and potential proactive cleaning missions. 

• Inspection Mission: When the fouling prediction algorithm triggers an alert, the Jotun Skate Op-

erator contacts the ship to schedule an inspection mission. The Jotun HullSkater can be operated in 

port or at anchor, provided there is sufficient 4G coverage for communication. 

• Proactive Cleaning Mission: If light slime is detected during the inspection mission, the Skate 

Operator initiates proactive cleaning. If time constraints preclude a proactive cleaning mission, the 

Jotun Skate Operator coordinates with the ship to determine the next available opportunity. 

 

3. Leveraging data 

 

In such solutions, correct usage of relevant data is critical for success. Operating the Jotun HullSkater incurs 

costs. In addition to that, the more inspections and the more pro-active cleaning missions conducted, the 

more robot maintenance is needed. It is obvious that an optimization process should be applied to keep the 

number of missions at an optimum level. The ideal scenario is to have a prediction algorithm that would be 

able to predict accurately the level of biofouling on a vessel’s hull and by this trigger a mission only when 

it is necessary. As previously discussed, this is when biofouling is approaching a fouling rating of 1 as per 

IMO’s biofouling management guidelines. Levantis et al. (2023) discussed the challenges faced, when 
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trying to model antifouling protection – the underlying physics of antifouling coating - and the pressure 

from the external marine environment. 

 

In that paper, a holistic approach was discussed for developing an accurate fouling prediction algorithm. A 

better version of this approach is now implemented in Jotun’s HullKeeper solution, a platform that enables 

timely decisions regarding hull maintenance, achieving accuracy levels of up to 80% in predicting biofoul-

ing settlement on a vessel’s hull. A similar fouling risk algorithm is used in Hull Skating Solution. The key 

difference in the Hull Skating Solution lies in the fact that coating protection does not need to be modeled, 

as the coating is always the same, SeaQuantum Skate. Given this, only the marine environment significantly 

influences the outcome, as the effect of the coating can safely assumed to be the same.  

 

Although this approach may seem simpler, the fouling risk algorithm requires careful tuning to be highly 

sensitive in the early stages of biofouling. To achieve this, two methods were introduced and will be pre-

sented in this study. The first, serving as a baseline, is a basic approach that ignores the influence of the 

external environment and identifies the optimal number of days after a mission. The second approach in-

corporates the influence of the external environment. 

 

To determine the optimal number of missions, data from actual vessels already utilizing Hull Skating So-

lutions were collected. The most crucial information required is the condition of the hull immediately before 

each proactive cleaning mission. To collect this data, the vessel hull is divided into sections. Each section 

is then rated based on the IMOs fouling rating scale by the Skate Operator after the completion of each 

mission, Fig.9. The data used for this study were obtained from 29 vessels (including bulkers, containers, 

and ROROs) to which, 493 inspection and proactive cleaning missions have been conducted. 

 

 
Fig.9: Vessel divided into sections and rated based on USN FR scale 

 

After preparing the data the basic approach is relatively easy. Let x represent the number of days after 

previous event. A possible mission is considered “justified” if, within 30 days after the theoretical mission, 

the hull condition is found to be equal to or greater than a fouling rating of 1. On the contrary, a mission is 

considered as “not justified” if the condition of the hull is found to be in a good state (fouling rating of 0). 

Based on this, it is possible to calculate the number of "justified" and "not justified" inspections for each 

value of x. After simulating all possible scenarios with x ranging from 30 to 90 days, the optimal x was 

determined to be 55 days, with only 38% of missions classified as "justified". This indicates a highly inef-

fective proactive cleaning strategy, as expected. This outcome can be attributed to the exceptional perfor-

mance of the ultra-premium coating. The data reveals that the ultra-premium coating consistently maintains 

the hull below a fouling rating of 1 for extended periods, resulting in a significant number of simulated 

missions being deemed "not justified." 

 

It is clear from the above that a more effective pro-active cleaning strategy is needed. To address this, an 

attempt was made to model the biofouling pressure from the environment. The underlying principle is that 

an inspection mission is conducted only when the risk from the environment exceeds a certain threshold. 

This can increase accuracy a lot as it accounts for vessels that have not been exposed to significant envi-

ronmental pressure for extended periods. If so, there is limited or no need to conduct an inspection mission 

on these vessels. 
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Levantis et al. (2023) highlighted the complexities when trying to model external risk from the environment.  

Since this is a highly complicated problem a more simplified approach was selected as a starting point. It 

is well-established that parameters such as sea water temperature, salinity, chlorophyl, sea water depth, UV 

light and nutrients have a strong correlation with the presence of biofouling, Yebra et al. (2004), Arai et al. 

(2009).  

 

Let daily fouling risk Rf be a function (f) of these parameters. The specific form of the function (f) was 

determined through empirical analysis and involved linear combinations of the environmental parameters. 

Vessels positions were obtained from AIS data, and corresponding parameter values for any given point in 

time were retrieved from https://marine.copernicus.eu/. To make sure that the risk is always a value between 

zero to one for each function (f) the value was divided by the number of parameters used in that function. 

This normalization step reflects the assumption that the maximum potential risk a vessel can be exposed to 

within a day is one, while zero represents no risk within that timeframe.    

 

Rf(t)=f(T,S,C,D,U,N) / n 

 

where: T: Seawater temperature  

S: Salinity 

C: Chlorophyll concentration  

D: Seawater depth  

U: UV light intensity  

N: Nutrient concentration 

n: number of parameters used 

 

Let RT(t1,t2) represent the total risk accumulated between times t1 and t2: 

 

𝑅𝑇(𝑡1, 𝑡2)  = ∑ 𝑅𝑓(𝑡)
𝑡2

𝑡1
 

 

As in previous approach a potential inspection mission would be classified as “justifiable” if, within 30 

days the hull is found to be equal or greater than fouling rating of 1. Given this, the optimum value of RT 

(risk threshold) must be determined to maximize the number of “justifiable” missions. Fig.10 illustrates the 

optimization process within a time series. The y-axis represents a possible values of RT function. The three 

vertical red lines indicate instances of proactive cleaning missions. Since these are actual proactive cleaning 

missions, they signify that there were parts of the hull that were rated with a fouling rating of 1, classifying 

them as “justifiable”. The optimization process aims to identify the optimum threshold that would trigger 

the most “justified” proactive cleaning missions. In this illustrated scenario, the optimum threshold would 

be located around RT=135, resulting in two “justifiable” and one “not-justifiable” proactive cleaning mis-

sion. 

 

After checking all possible combinations of Rf(t) and identifying the optimum RT for each, the best per-

forming model was selected. This accuracy level might be slightly lower than expected for such a sophis-

ticated solution, but it's crucial to acknowledge the inherent complexity of the problem. There are numerous 

instances where an optimal value may not exist. For example, if only the first two missions are considered 

in the above example, it becomes evident that an optimal threshold cannot be definitively determined. If 

the threshold is increased, the result will be one "justifiable" proactive cleaning mission (the first instance) 

and one "non-justifiable" mission (the second instance). Conversely, if the threshold is decreased, the out-

comes will be reversed. 
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Fig.10: Illustration of the optimization process 

 

4. Delivering on expectations - visual assessment and ISO 19030 analysis 

 

In order to test if the solution is actually delivering an always clean hull, hull performance was evaluated 

using both visual inspections and sensor data. To measure hull performance from sensor data the ISO 19030 

analysis methodology was used. Data from 5 vessels were retrieved. Unfortunately, these vessels didn’t 

have high frequency data, necessitating the use of validated noon data. The sailing periods for vessels A, 

B, C, D and E are 25, 25, 26, 35 and 29 months, respectively, since they applied Hull Skating Solutions. 

Vessels A, B and C are large car carriers, vessel D is a container of 13.000 TEU and vessel E is a 60.000 

deadweight tonnage bulk carrier.  

 

To validate the noon data, additional sources were utilized. Speed over ground and draft were validated by 

using AIS data. To exclude the influence of adverse weather conditions, wind speed and sea state was 

compared against wind and waves data retrieved from https://marine.copernicus.eu/. To validate steady 

state of speed over a day (as mandated by the ISO 19030 methodology) AIS data were used in order to 

calculate the standard deviation of speed over ground within a day. Anything above standard deviation of 

2 knots was filtered out.  Additionally, all possible correlation (speed–power, speed-rpm, speed-fuel oil 

consumption, rpm-power, rpm-fuel oil consumption, power-fuel oil consumption) were plotted and visually 

assessed. Clearly erroneous values were filtered out. 

 

As illustrated in Fig.11, all vessels are performing very well, meeting expectations. Hull Skating Solutions 

in-service performance as per ISO 19030 is expected to be 0.5% over a 60 month period. Vessels A, B, C, 

D and E in-service performance is 0.15%, 0.32%, 0.02%, 0.25% and 0.22% respectively. It is important to 

highlight that no downward trend is seen in 4 out of 5 vessels. Vessel B, however, may exhibit a potential 

downward trend after July 2024. This could be attributed to biofouling accumulation or changes in the 

operational profile. Upon thoroughly examining the operational profile of vessel B during this latter period, 

it was found to be operating at a draft two meters lower and one knot slower compared to previous voyages. 

This discrepancy explains the observed downward trend in performance during this specific period. 
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Fig.11: In service performance of Vessels A, B, C, D and E 

 

To strengthen more what was obvious from the data, access to the video footage of the latest inspection 

from the HullSkater was given. By thoroughly examining the videos and as seen in Fig.12 (representative 

pictures) all vessels hulls appear to be clean. As expected, sometimes there were some small areas with 

light slime (FR 1 as per IMO Biofouling Guidelines) where they had to be proactively cleaned.  

 

 
Fig.12: Representative condition of the hull from Vessels A, B, C, D and E 
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Abstract 

 

This paper addresses vessel performance in scenarios where there is only manually logged data 

available from a fleet of vessels with the absolute economy package of measuring devices and no access 

to third party analysis, naval architect expertise, trim tables or anything like that. 

 

1. Background 

 

Despite the advances in the last couple of decades in the understanding of vessel sensor data quality, 

increased availability and reliability of weather, current and bathymetry data, development of fouling 

exposure models, digital twins, trim tables, etc. and the availability of high frequency data from AIS, 

there are still those in the industry that refuses to join the 21st century. 

 

So, what can one do when faced with these limitations? 

 

That will of course depend on the qualifications that one has, and the answer given in this example is 

therefore coloured through the lens of a Dual Marime Officers that spent 10 years in Maersk Line before 

going ashore to pursue a career in vessel performance. 

 

2. Master Data 

 

This is an exercise in what is possible with very limited resources and availability of data for a given 

vessel. All vessels have the minimum of documentation required to use this approach and there will 

usually not be any issues getting access to this documentation, even if one is purely a vessel Operator. 

 

2.1. Sea Trial 

 

The sea trial deck/engine contains a lot of data that is important to most vessel model building, but it is 

not necessary to this approach. 

 

2.2. Main Engine Testbed 

 

The main engine testbed/shop trial forms the foundation for the basic vessel model as this is the richest 

source of reference data for which there also exists a robust set of measurements that the crew can 

submit via almost any manual reporting tool. 

 

3. Collecting Data 

 

Your average manual reporting platform will not have fields for reporting the data that is required to 

use this approach, but is should be relatively simple to add these fields to most reports as they will not 

have to be mapped to other systems or integrated with anything else as all, except of course that you 

will have to be able to access the database/repository where the manually reported data ends up. 

 

3.1. Data Gatekeepers 

 

Usually, it will be the vessel operator that receives the manually reported data for review and approval. 

Their focus will of course be on distance/speed and consumption in relation to any Charter Party Speed 

& Consumption clauses, other speed and consumption instructions or speed and consumption tables 

within their voyage management system. 
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Other data in the report is unlikely to be begiven much attention and is therefore more likely to be 

approved despite typing errors, deliberate manipulation by crew, misunderstandings by crew on what 

is supposed to be reported and so on. 

 

3.2. Data Quality Checks 

 

Most systems for manual reporting that are not integral to a vessel performance system have inadequate 

or no data validation at the point of entry, usually limited to type of data e.g. text or number fields or if 

we are lucky, order of magnitude checks e.g. between 0.0 and 99.9. 

 

4. Building a Basic Vessel Model 

 

Strictly speaking it is not a vessel/hull model but more of an engine model used to approximate hull and 

propeller performance. 

 

4.1. Nominal Propeller Curve 

 

The nominal propeller curve describes the relation between the revolutions of the propeller shaft and 

the load on the propeller shaft as recorded in the main engine documentation. This curve forms the 

foundation of the basic model and the performance analysis. 

 

4.2. Power Estimation 

 

In the absence of a shaft load measurement, some vessels with newer engines are equipped with Online 

Performance Measurement Indicator, that optimizes combustion pressure in service, but also gives an 

engine load measurement. This could be used as a proxy for shaft load, but the following assumes that 

this measurement is not available either. 

 

4.2.1 Shaft Speed vs Nominal Shaft Load 

 

The relationship between shaft speed and nominal shaft load is a cubic and can be describe as ax3 = b, 

where a is a constant, x is the shaft speed and b is the shaft load. The constant a can be derived by 

inserting the main engine Maximum Continuous Rating for shaft speed and shaft load e.g. 6150 kW @ 

121 RPM. 

 

𝑎 =
6150

1213
= 0.0034715… 

 

Fig.1 was made in Excel and the blue line represents the 3rd order polynomial regression function build 

into the graph. The Green line represents the pure cubic relationship described above and as we see 

there is no significant difference between the two within the range for which data is available in the 

main engine testbed/shop trial, represented by the orange square, and below that range the pure cubic 

relationship gives better estimates as it does not go below 0 kW. 

 

4.2.2 Fuel Pump Index vs Shaft Load 

 

The fuel pump index is a measure of the volume of fuel that is injected into the engine and this 

measurement is of course dependent on the wear and tear on the fuel injection pumps as well as the 

lower calorific value of the fuel. Normalization for fuel pump wear is not possible with the data 

available, and for the purpose of this basic model, normalization for the lower calorific value will not 

be included.  

 

The relationship between fuel pump index and shaft load is relatively close to linear, but not quite since 

leakage in the pumps increase slightly with increased shaft load and the regression therefore uses a 2nd 

order polynomial. 
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Fig.1: Excel graph showing the relationship between shaft speed and nominal shaft load 

 

Interpolation at lower loads than the data sample present in the main engine testbed/shop trial is 

reasonably accurate since there are no other external factors influencing it and we can safely assume 

that a fuel pump index of 0 is equal to a shaft load of 0 kW.   

 

 
Fig.2: Excel graph showing the relationship between fuel pump index and shaft load 

 

4.2.3 Turbo Charger Speed vs Shaft Load 

 

The turbo charger speed is a measure of the amount of exhaust gas that the engine is producing, and 

this measurement is of course dependent on the wear and tear on the turbo charger turbine and 

compressor sides, which will result in lower and higher speeds measured respectively. Normalization 

for these factors is not possible with the available data.  
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The relationship between turbo charger speed and shaft load is relatively close to linear, but 

interpolation at lower loads than the data sample present in the main engine testbed/shop trial should be 

avoided at least at loads where the auxiliary blower is running. 

 

 
Fig.3: Excel graph showing the relationship between turbo charger speed and shaft load 

 

4.2.4 Scavenge Air Pressure Speed vs Shaft Load 

 

The scavenge air pressure, like the turbo charger speed, is a measure of the amount of exhaust gas that 

the engine is producing, and is dependent on the same factors, but also on the airflow and filter condition 

on the compressor side as well as the scavenge air cooler performance. Normalization for these factors 

are not possible with the available data.  

 

The relationship between scavenge air pressure and shaft load is represented by below 2nd order 

polynomial and interpolation at lower loads than the data sample present in the main engine 

testbed/shop trial should be avoided at least at loads where the auxiliary blower is running. 

 

While the fuel pump index and turbo charger speed measurements are both accurate and precise, the 

scavenge air pressure may be precise but will usually not be very precise as the gauge from which the 

reading is taken has low granularity. 

 

 
Fig.4: Excel graph showing the relationship between scavenge air pressure and shaft load 
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4.2.5 Shaft Load vs Specific Fuel Oil Consumption 

 

During the main engine testbed/shop trial, shaft output and consumption is measured along with the 

environmental conditions relating to its normalization and we can therefore create another 2nd order 

polynomial describing the shaft load to ISO normalized specific fuel oil consumption. 

 

With the estimated load, as described above, we can translate that to an estimated consumption that 

may then be compared to the reported consumption. 

 

In below example we see a dataset that was obviously manipulated to show a contract compliant SFOC 

at the contract point, while being unusually high at loads immediately above or below the contract point.  

 

 
Fig.5: Excel graph showing the relationship between shaft load and specific fuel oil consumption. 

 

4.2.6 Application of Basic Vessel Model in Data Collection Platform 

 

In this example it was possible to implement the calculations described above in the manual data 

collection tool on board, but just the fields required to collect the data, giving the crew an opportunity 

to notice data entry errors resulting in unrealistic calculated results. 

 

 
Fig.6: Example of on-board shaft load estimation based on available measurements 



200 

In the real world of course, if it can go wrong, it will and despite our best efforts, instructions, guidance 

and tool tips, crews have other things to do at do not pay attention to those things. 

 

 
Fig.7: Example of on-board data collection with reporting errors 

 

5. Vessel Performance Analysis 

 

Plotting the development of the light running factor over time, where 10% light running will be plotted 

as 100 - 10% = 90 in below graph, we can see a development over time as hull and propeller 

performance deteriorates. 

Note that there is of course no normalization for draft, trim, water depth, weather or anything like that. 

 

 
Fig.8: Example of the development of the light running index over time 

 

Looking at the development we see that it is about 84 1st of April and about 90 1st of February giving 

us a delta of 6/84  7% increase in propulsion resistance (assuming 100-16 = 84 or 16% light running 

as the out of dock performance). 
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Fig.9: Actual performance system evaluating added resistance development over time 

 

Looking at the same data from an actual performance system we see a development of added resistance 

from about 10% to about 18% or index 1.10 to 1.18  7% increase in added resistance over the period 

(assuming the 10% added resistance or index 1.1 as the out of dock performance). 

 

Does this mean that we can dispense with all our naval architects, hind cast weather, auto-log data and 

so on? No of course not, only that it is possible in the absence of an actual performance system to do 

something rather than nothing. Given the opportunity an actual performance system should always be 

chosen. 
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Abstract

 

This paper describes the findings of a research study commissioned by I-Tech, based on data provided 

by Safinah Group, which attempts to further quantify the true scale of barnacle fouling across the global 

shipping fleet. Data is presented from the assessment of animal fouling prevalence on 685 vessels 

during hull condition inspections in dry dock between 2015-2024. The results of this study proceed an 

earlier study presented by I-Tech at HullPic in 2020, wherein the analysis of hull condition data was 

undertaken, as an indicator for the scale of barnacle fouling on the global shipping fleet, albeit for a 

smaller sample size of 249 vessels. The impact of the biocide, Selektope on barnacle fouling across a 

selection of ships inspected during dry docking is also described in this paper.  

 

1. Introduction  

 

Ships spend their working lives sailing through, or sitting in, a watery soup of aquatic micro and macro-

organisms. The composition of the watery soup, and its strength varies from area to area on a global 

scale, determined by several varying factors including light levels, water temperature and pH.  

 

Soon after a vessel enters the water, a natural process occurs whereby microorganisms in the water form 

a biofilm. After around one week, spores and protozoa, and larvae of macrofouling species attach to the 

hull. Over the course of a few weeks, larger macrofouling species anchor to the surface and grow. 

 

This process is called biofouling. In the 2023 Guidelines for the control and management of ships' 

biofouling to minimize the transfer of invasive aquatic species (Biofouling Guidelines), IMO (2023), 

the International Maritime Organization (IMO) defines biofouling as “the accumulation of aquatic 

organisms such as microorganisms, plants and animals on surfaces and structures immersed in or 

exposed to the aquatic environment.” They also state that “biofouling can include pathogens.” 

 

There are approximately 5,000 different fouling species that are found in the world’s oceans. These can 

be classified into micro fouling which comprise slime fouling and macro fouling which comprises weed 

fouling and animal fouling (hard, with a shell and soft, without a shell). 

 

In the 2023 Biofouling Guidelines, the IMO defines microfouling as “biofouling caused by bacteria, 

fungi, microalgae, protozoans and other microscopic organisms that creates a biofilm also called a slime 

layer”, and macrofouling as “biofouling caused by the attachment and subsequent growth of visible 

plants and animals on structures and ships exposed to water. Macrofouling is large, distinct multicellular 

individual or colonial organisms visible to the human eye such as barnacles, tubeworms, mussels, 

fronds/filaments of algae, bryozoans, sea squirts and other large attached, encrusting or mobile 

organisms.” 

 

Any organisms anchored on a ship’s hull create increased hydrodynamic drag (added frictional 

resistance) which significantly decreases vessel performance. Hard (with a shell) animal fouling (noted 

as calcareous fouling in Fig.2) which includes molluscs, bryozoans, tubeworms and barnacles cause the 

greatest added resistance penalty in terms of hydrodynamic drag when attached to a vessel’s hull. 

 

This is not good news for ship owners and/or operators attempting to meet global rules around GHG 

emission reduction in the IMO’s 2023 GHG Strategy, namely a CO2-per transport work reduction target 

of 40% by 2030, and a 2050 net zero GHG target. Also, tighter restrictions coming into force on a 

regional scale around biosafety.  
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In GIA (2022), a statement in the opening introduction to the report reads: “One of the most significant 

factors impacting the efficiency of all ships in service is associated with the resistance generated by the 

friction of water on the ship’s hull.  Resistance increases when the hull is fouled. Therefore, maintaining 

a smooth and clean hull free from biofouling is of paramount importance to optimise the energy 

efficiency of ships.” 

 

 
Fig.1: Impact of ship hull fouling on GHG emissions, GIA (2022) 

 

Hull condition Additional shaft power 

to sustain speed (%) 

Freshly applied coating 0 

Deteriorated coating or thin slime 9 

Heavy slime 19 

Small calcareous fouling or macroalgae 33 

Medium calcareous fouling 52 

Heavy calcareous fouling 84 

Fig.2: Roughness and fouling penalties for a navy vessel - adapted from Schultz (2007) 

 

 
Fig.3: Barnacles (medium calcareous fouling) on the flat bottom area of a chemical tanker hull 

 

A 2020 study, commissioned by I-Tech based on data provided by Safinah Group, Hoffmann and Austin 

(2020), found that 40% of ships surveyed for hull condition in a sample size of 249 had more than 20% 

of their underwater hull flat bottom area covered with hard animal fouling. Approximately 10% of ships 

inspected in the sample had more than 40% of their underwater areas covered by hard animal fouling. 
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Swain et al. (2022) calculated that if the underwater portion of all the world shipping fleet could be 

maintained in a smooth and fouling free condition, then the reduction in CO2 and other exhaust gasses 

would be significant. In this study, the estimated hull condition from Munk et al. (2009) was used to 

quantify the reduction in CO2 emissions if all vessels were maintained in a smooth and fouling free 

condition:  

 

“1,056 million tons/year (an International Maritime Organization estimate for CO2e emissions from 

ships from the 4th Greenhouse Gas study) × 0.7 friction resistance (assuming the average contribution 

of power from frictional resistance to move a ship is 70%) × [(33% ships with a 10% penalty) + (50% 

ships with 30% penalty) + (17% ships with 50% penalty)] 

 = 198 million tons of CO2e or 19% per year reduction of ship emissions.” 

 

A hull suffering from heavy biofouling is also extremely impactful on maintenance costs. Costs 

associated with hull cleaning services must be factored into a ship operator’s operating expenditure 

(OPEX). Repeated cleaning of the hull can also remove layers of the antifouling coating thickness, 

reducing its service life.  

 

In addition, growing regulatory focus on the transportation of invasive aquatic species by the 

international shipping fleet can also impact a ship commercially. Some regional regulations are already 

in force that allow ports to refuse entry of heavily bio-fouled ships, resulting in greater financial costs 

for the operator. 

 

2. The important role of antifouling coatings  

 

Antifouling coatings act as the first line of defence against micro and macro biofouling organisms. They 

prolong the life of marine vessels and reduce GHG emissions by keeping the hull surface smooth and 

with minimal frictional resistance. Careful selection of an antifouling coating product for a ship is 

essential to ensure it meets the requirements of the ship in terms of its trade routes, activity levels and 

potential biofouling risk encountered during the coating’s service lifetime, which could be up to 60 

months.  

 

There are essentially two main types of fouling control technology for commercial vessels, foul release 

coatings (with or without biocides) and biocidal antifouling coatings. 

 

A biocidal antifouling coating comprises a soluble, or partially soluble, resin system that contains a 

mixture of biocide(s) effective against a broad range of fouling organisms. They are the most widely 

used technology for fouling control and account for approximately 90% of the fouling control 

technology market. These types of antifouling coatings primarily differ by the resin system used, also 

referred to as ‘delivery mechanism’, and the level and type of biocides used. The two main types of 

biocidal antifouling resins are: Controlled Depletion Polymers (CDPs) and Self-Polishing Copolymers 

(SPCs). 

 

Foul release coatings typically comprise low surface energy silicone polymers. The speed of the vessel 

produces the hydrodynamic shear needed for the loosely attached fouling to fall off. Some foul release 

antifouling coating products are biocide-free and some contain biocides.  

 

There are also ‘hard coatings’ that are based on epoxy technology and are biocide free. These coatings 

are mainly used for ice-going vessels. They accumulate biofouling quickly but are designed to withstand 

regular in-water cleaning without damaging the integrity of the coating. 

 

3. The need for antifouling biocides  

 

For centuries, materials or compounds that have an antifouling effect have been used for biofouling 

prevention on surfaces submerged in water.  
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Throughout this vast experience in using biocidal compounds, no other solutions have been proven as 

viable alternatives to meet increasingly tough requirements from the industry on i) application 

procedures, ii) long-term in-service life (up to 60 months) and iii) coating renewal processes, for the 

entirety of the global shipping fleet.  

 

Biocidal products have been proven to be the one of the best solutions to meet the environmental and 

performance requirements for marine vessels operating in a highly competitive commercial 

environment where vessels sail in waters with varying biofouling risk.  

 

To be effective across the entire range of biofouling micro- and microorganisms, a combination of 

biocides are generally used within an antifouling coating, referred to as co-biocides.  

 

Today, there are a limited number of biocides that have passed evaluation and are approved for global 

use in marine coatings. Biocides are approved by the most stringent regulatory schemes in many global 

regions such as EU, UK, Turkey, Malaysia, South Korea, Japan, China, Australia, New Zealand, 

Canada, and the USA. The regulatory landscape for new biocidal substances is complex and this is 

certainly the case for biocidal substances intended for use in marine antifouling coatings. Biocides in 

use today have been tested, evaluated, and used for more than twenty years. 

 

However, the biological complexity and the high industrial requirements for hull coatings present an 

increasingly complex challenge for this small, but highly impactful collection of certified biocides. 

According to data presented by Alistair Finnie at the 2023 International Antifouling Conference, in the 

listed antifouling coating products in the Lloyd’s Register Antifouling Coating Type Approvals 

database as of August 2023, 10 biocides were used but with 45 different listed combinations, 

https://www.lr.org/en/services/classification-certification/lr-approvals/. 

 

4. The nature of barnacle fouling  

 

Hard macro-organisms create the greatest added frictional resistance. This type of biofouling also 

introduces complexities for hull grooming practices. For example, even when cleaning methods that 

can remove hard fouling are used, the base plates of barnacles and their colonies can remain on the hull.  

The biofouling success of barnacles is attributable to their adhesion to the hull surface. Barnacle larvae 

release an oily droplet to clear water from surfaces before sticking down using a phosphoprotein 

adhesive. This two-component system ensures that the glue can adhere even in the challenging 

conditions of the ocean, where dissolved ions, varying pH levels, and constant wetness would typically 

hinder adhesion.  

 

The strength of this glue-like substance is such that mechanical forces are required to dislodge attached 

barnacles. In the first week after settling, the surface between the barnacle and the hull is very small, 

and the barnacles constantly release "barnacle" glue to bond to the surface. At this stage, the barnacles 

can be removed by a hull cleaning without damaging the coating. However, the older and larger a 

barnacle becomes, the more difficult it will be to remove from the hull without damaging the coating.  

 

Once one barnacle larva attaches to the hull and progresses from cyprid larvae, to juvenile and into its 

adult life stage, it does not take long for a whole colony of barnacles to follow. 

 

However, avoiding barnacles isn’t an easy task. As a rule of thumb, barnacle larvae attach to a ship hull 

when it is stationary. Since most barnacle species prefer shallow or tidal zones, with 75% of them 

residing at depths of less than 100 metres, ships sailing in the open ocean or seas are at a lower risk. 

This means that barnacle fouling risk increases significantly within coastal areas, and if a ship is 

spending time at anchor, or at very low speeds, typically below 6 knots. 

 

Hoffmann and Austin (2022) presented the results from an examination of idling and barnacle biofouling 

using in-depth analysis of the global fleet patterns from AIS data for all IMO-registered vessels in the 

global fleet. This research revealed that the total number of vessels idling has roughly doubled over the 
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decade 2010-2020 and that depending on season, between 50% - 85% of idling is occurring in water 

temperatures of above 15oC).  

 

I-Tech found that ‘Fouling Idling’, as defined in the study as ‘any vessel that is idling for 14 days or 

more in waters of 15oC or more’, had increased constantly since 2009, with a starting point of 25.4% to 

a peak of 35.0% in May 2020 in the global fleet.  

 

The study also found that vessels are increasingly idling in so-called biofouling ´hotspots´, where water 

temperatures above 25°C. Vessels spending most of their time sailing in these regions are at acute risk 

of excessive hard fouling accumulation. 

 

The conclusion of the study was that antifouling coating products that can offer extended static 

protection from both soft (slimes) and hard (barnacles) fouling are essential for the adequate protection 

of the global shipping fleet from biofouling. 

 

5. Selektope® as a barnacle-repelling biocide and its future applications 

 

Improving static performance against barnacle fouling has been a focus for the sector given the severe 

impact that barnacle fouling has on increasing added resistance and GHG emissions.   

 

The introduction of the biocide Selektope® to the market in 2015 has offered antifouling coatings 

manufacturers the ability to increase static performance guarantees for coating products.  

 

As an organic, non-metal active agent, Selektope is relatively unique compared to traditional marine 

biocides. When exposed to Selektope, the swimming behaviour of a barnacle cyprid larva is activated 

through receptor stimulation, this disables their ability to settle on a surface. The effect of Selektope is 

temporary and has reversible effects. Any larvae that came into contact with Selektope could still 

metamorphose into juvenile barnacles with no apparent ill effect. When used in antifouling paints, 

Selektope can protect all ship types when they are idle or operating at low speeds for extended periods 

of time, even in extreme barnacle fouling risk areas.  

 

Today, approximately 3,000 ships are sailing with coatings that contain Selektope. SPC antifouling 

coatings products that contain Selektope are sold by multiple coatings manufacturers.  

 

In SPC biocidal coatings, Selektope binds to pigment and other particles and is continuously released 

in the same way as other biocides present. The compatibility between Selektope and the paint matrix in 

the marine coatings industry ensures as slow and steady release secures the antifouling effect for the 

entire coating service life.  

 

Selektope is a biocide that has highly favourable antifouling properties at low concentrations (nano 

Molar). To obtain full protection against barnacle fouling, 0.1 - 0.3% w/w of Selektope should be used 

in a wet paint formulation. That equates around 2 grams of Selektope per litre of paint when 0.1% w/w 

is used, comparable to 500-700 grams of cuprous oxide used per litre of paint. 

 

Extensive R&D efforts are being undertaken by scientists at I-Tech to incorporate Selektope into foul 

release coatings (e.g. via attaching Selektope to a polymer chain) with successes achieve to-date.  

 

6. Novel research: determining the true scale of barnacle fouling on the global shipping fleet 

 

In November 2024, I-Tech contracted Safinah Group (Safinah) to independently analyse a dataset 

comprising hull condition data from 685 vessel inspections. This study updates I-Tech (2020) wherein 

data from 249 vessel inspections were independently analysed by Safinah to quantify the scale of 

barnacle fouling on the global shipping fleet. There are certain limitations related to the analysis that 

should be taken into account when interpreting the results and conclusions of this study: 
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• Certain ship types are better represented in the data, such as tankers.  

• The coating technology comparisons in terms of animal fouling do not include any operational 

history or environmental data,  

• In-water cleaning frequency is not taken into account in this study, 

• The age of the ships comprising the sample is relatively low so that may have an impact on the 

choices regarding surface preparation and coating selection.  

• Commercial product names or any identifiers linked to the inspected ships have not been 

disclosed. 

 

Furthermore, the dry dock reports received for data analysis do not provide details as to a vessel’s 

activity and/or static periods. Extended static periods are known to be particularly challenging to both 

biocidal and foul release coating types. 

 

The data used in the research is based on historical drydock attendance reports / inspections conducted 

by Safinah during the period 2015 – 2024. This dataset comprised data from 685 individual vessel 

inspections undertaken from 836 hull-related drydock projects managed and conducted by Safinah in 

that time period.  

 

The 685 vessels inspected are presented, by type, in Fig.4.  

 
Fig.4: Vessel type distribution 

 

The majority of vessels inspected by Safinah were younger than 10 years. Fig.5 show the vessel age 

distribution for the total number of dry dock projects undertaken by Safinah. 260 drydock projects were 

conducted for 0–5-years-old vessels, and 250 drydock projects for 5–10-years-old vessels, respectively. 

 
Fig.5: Vessel age distribution 

 

Less than 100 drydock projects were conducted for vessels over 15 years in age and under 50 drydock 

projects were conducted for vessels aged 20 years and over.  
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In this study, observations of animal fouling are used as a method to quantify barnacle fouling coverage. 

Safinah confirms that while the term ‘animal fouling’ is used for the purposes of this study, animal 

fouling presence on vessel hulls is pre-dominantly barnacle related.   

 

Fig.6 shows the overall animal fouling coverage by proportion of the total underwater hull area for all 

vessels inspected during 761 hull-related drydock projects undertaken by Safinah.  

 

• Most dry dock projects found vessels with animal fouling on the underwater hull. Only 140 

drydock projects found vessels with <0.1%/<0.1sqm animal fouling coverage on the hull. 

• The majority of drydock projects found vessels with 0.1 - 5% animal fouling coverage on the 

underwater hull. 

• More than a third of drydock projects found vessels with >10% animal fouling coverage on the 

underwater hull.  

• 18% of drydock projects undertaken found vessels with >20% animal fouling coverage on the 

underwater hull. 

 

 
Fig.6: Animal fouling coverage on the underwater for vessels inspected in 761 drydock projects 

 

In Fig.7, the total surface area covered by animal fouling on the hull, plotted as m2 coverage, is pre-

sented. The average underwater hull area in this data sample is 11,600m2. In terms of animal fouling 

coverage by m2 area of hull surface, the highest percentage of drydock projects found vessels with 

0.1%-1000m2 of animal fouling coverage. Fig.7 also shows that for 400 of the 761 drydock projects 

undertaken; vessels had 0.1-1000 m2 of animal fouling coverage. Whereas 110 drydock projects found 

vessels with 1000-2000m2 of animal fouling coverage. The number of drydock projects where larger 

surface areas were covered by animal fouling decreases significantly after 4,000m2.  

 

 
Fig.7: Animal fouling coverage on the underwater hull as m2 

 

Fig.8 presents a deeper analysis of the level of animal fouling found on vessels inspected by hull area.   
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Fig.8: Animal fouling levels by main hull area 

 

The combinations of animal fouling types by hull area are quantified in Fig.9. Fig.9 shows that 

animal/weed and slime were the most encountered fouling condition on the flat bottom and vertical 

sides logged for the 685 vessels inspected. Whilst animal fouling, with or without other fouling types, 

is present on the majority of vessels inspected for vertical sides and flat bottom, animal fouling is more 

prevalent on the flat bottom hull area.  

 

 
Fig.9: Biofouling type combinations by main hull area 

 

The presence of animal fouling by ship type on arrival in drydock is presented in Fig.10. Fig.10 shows 

that all vessel types had some level of animal fouling presence on the hull when inspected.   

 

Also, Fig.10 confirms that animal fouling is more prevalent on tankers (product, chemical, crude, LNG, 

and LPG). The vessel type with the lowest proportion of animal fouling in the data set was 

containerships, closely followed by Pure Car Carriers (PCC).  

 

Large variations in animal fouling between vessel types can be attributable to a certain degree to 

different root causes, different paint systems, speed, activity and where the vessels sail (geographically).  
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Fig.10: Animal fouling presence by ship type 

 

A further split of the data was made to assess barnacle fouling by relative activity of the vessel types. 

The split of vessel types by higher activity level and low activity lower is shown in Fig.. While the 

actual activities of the vessel in the dataset were unknown, the vessels were grouped by relative vessel 

activity based on typical industry assumptions. 

 

Relatively lower activity Relatively higher activity 

Chemical / Product Tanker Car Carrier 

Crude Oil Tanker (up to 80k DWT) Crude Oil Tanker (up to >80k DWT) 

LPG Container 

Oil Products Tanker Cruise Ship 

 Ferry 

 LNG 

Fig.11: Vessel types by relative vessel activity 

 

The fouling condition for lower and higher activity vessels in the dataset are presented in Fig.12.  

 

 
Fig.12: Animal fouling proportion (%) – higher activity vessels versus lower activity vessels 

 

This data shows us that higher levels of animal fouling are more prevalent on lower activity vessels 

(20.5% on lower activity vessels versus 11.4% on higher activity vessels). Also, we can conclude from 

the data that larger proportions of the relatively lower activity vessels arrive in drydock with more than 

10% of the hull area covered in animal fouling. 
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In Fig.13, animal fouling presence by hull area for higher activity vessels versus lower activity vessels 

is presented. These statistics are area-specific rather than ship-specific. Fig.13 shows that animal fouling 

coverage is significantly greater across the flat bottom of both higher and lower activity vessels 

compared to the boottop. In lower activity vessels, animal fouling is more prevalent on the flat bottom 

than on higher activity vessels. However, animal fouling on the vertical sides of both lower activity and 

higher activity vessels is relatively similar. 

 

 
Fig.13: Animal fouling presence by UWA type, higher activity vessels versus lower activity vessels 

 

Polish through can be an issue with biocidal antifouling coating systems. The analysis presented below 

examines the level of polish through versus animal fouling coverage was conducted to distinguish if 

one of the potential causes of animal fouling lies in polished through areas of coatings. Fig.14 isolates 

the levels of polish through and animal fouling. Fig.14 shows that ships with larger areas of polish 

through tend to arrive in drydock with more animal fouling on the underwater hull. The data also tells 

us that polish through occurrence is not uniform across vessel areas – the number of observations per 

each main hull area and polish through level varies. The data presented in Fig.14 also confirms that 

>20% polish through has a more significant effect on animal fouling on the flat bottom and vertical 

sides than <20% polish through. Note that even with no polish through, animal fouling is still present 

on the flat bottom and vertical sides. This confirms that not all animal fouling presence can be reasoned 

by polished through areas of a coating. 

 

 
Fig.14: Animal level by main hull area and level of polish through 
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An analysis of animal fouling presence on conventional biocidal coatings versus foul release coatings 

was undertaken as part of this study. Also, animal fouling coverage on different grades of antifouling 

coatings were assessed.  Conventional biocidal products were split into ‘Perceived Low Technology 

Level’, “Perceived Medium Technology Level’ and ‘Perceived High Technology Level”. Fouling re-

lease products (biocidal / biocide-free) are grouped under the ‘FRC’ technology. The results in Fig.15 

indicate that no perceivable difference between technology types can be observed in terms of level of 

animal fouling, for the ships inspected in this sample, without factoring in ship operating history and 

environmental conditions. 

 

 
Fig.15: Animal fouling by technology. Foul Release Coating (FRC) (including products with and 

without biocides) versus conventional biocidal coating products (other).  

 

Fig.16 shows animal fouling prevalence on different coating technology grades.  

 

 
Fig.16: Animal fouling by technology grade (data from 547 dry dock projects) 

 

The data in Fig.17 tells us that high grade coatings are working better in terms of animal fouling 

prevention than medium or low-grade technologies. Please note, the analysis conducted in this study 

does not take into account in-docking times, docking cycles and any in-water cleaning events in between 

dry dockings.  

 

Most foul release coatings can also be regarded as high performing systems. However, the following 

conclusions can be made based on this data analysis. High performing systems show better performance 

on average (depicted by the line).  

 

Low and medium systems show similar results however, the lower grade systems are more often used 

for 2-to-3-year schemes while the medium systems can be used for up to 5 years docking cycles.  
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As part of the study, Safinah conducted independent analysis of inspections carried out on a small 

sample of vessels with Selektope-containing antifouling coating products on the underwater hull. A 

total of 12 ships were inspected. 11 ships had their full underwater hull coated with Selektope-

containing antifouling coating products, whereas 1 ship had only the vertical sides of their hull coated 

with a Selektope-containing antifouling coating product. It should be noted that this is a small sample 

size and data on in water cleaning events were not available. Therefore, the impact of in water cleaning 

events is not factored into the analysis. This data analysis confirmed that ships with products containing 

Selektope arrived in drydock with <10% animal fouling coverage in most cases (10 out of 12 ships 

inspected).  

 
Fig.17: Animal level of ships on arrival with and without Selektope 

 

Two of the vessels inspected had over 10% animal fouling coverage on the vertical sides – one with a 

little over 10% coverage and the other with 19.6% coverage respectively. The vessel with over 10% 

animal coverage was a container ship. (60-month scheme with Selektope antifouling coating on the 

vertical sides and flat bottom). The vessel with over 19% animal coverage was a Suezmax crude oil 

tanker. Historical AIS data was obtained for the container ship. There were 3 stationary periods over 13 

days for the 60 months docking interval, all of which occurred nearly 3 years prior to dry-docking the 

ship. This suggests that the animal fouling observed is not a direct result of a significant stationary 

period prior to dry-docking. Analysis of the speed and activity profile of the vessel, over the whole 

period and year on year, did not reveal any operational anomalies that could be linked to the arrival 

condition. An overview of the operational history of the vessel is presented below. 

 

  
Fig.18: Overview of the operational profile of a containership with ~10% animal fouling coverage 

(Selektope-containing coating on flat bottom and vertical sides) 
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Fig.19: Photographs of the arrival condition of a container ship with ~10% animal fouling (Selektope-

containing coating on flat bottom and vertical sides) 

 

7. Conclusion  

 

Based on a dataset of 836 dry docking projects wherein the hull inspection data for 685 vessels was 

analysed, the authors conclude that barnacle fouling is a big problem for the global shipping fleet. The 

majority of vessels inspected had animal fouling coverage levels of 0.1-5% on their underwater hull 

and more than a third of vessels inspected had >10% animal fouling coverage. Animal fouling 

conditions on the flat bottom of vessels inspected was more intense than the authors expected. Although 

this was not investigated as part of this study, it is possible that the phenomenon is partly due to the 

practice of using more economic coating systems on the flat bottoms of vessels.  

 

Ships with larger areas of polish through tend to arrive in drydock with more animal fouling however, 

the data shows that animal fouling was also prevalent on vessel hulls without polish through. This 

confirms that not all animal fouling can be reasoned by polished through areas of a coating.  

 

The data analysis in this study confirms that high grade coatings are working better in terms of animal 

fouling prevention than medium or low-grade technologies.  

 

Data analysed for foul release (with and without biocide) versus conventional biocidal coatings showed 

that no perceivable difference between technology types can be observed in terms of level of animal 

fouling for the ships inspected in this sample, without factoring in ship operating history and 

environmental conditions. 

 

Independent data analysis on the vessels using coatings with Selektope showed, in the majority, no 

barnacle fouling. Although this was not investigated as part of this study, Selektope has been shown to 

deliver animal fouling settlement protection during long idle periods. The authors conclude that 

coatings inclusive of the barnacle-repelling technology, Selektope should be used to afford protection 

against barnacle fouling for vessels at any risk of idling for more than a few days or weeks on both flat 

bottom and vertical sides.  

 

The evidence from the data set clearly points to a need for further improvement in the current fouling 

control range in resisting animal fouling to achieve global decarbonization targets.  

 

As the maritime industry moves towards using cleaner, greener, less carbon intensive fuel options, the 

cost of fuel per metric ton will only increase. Therefore, increased fuel consumption resulting from 

biofouling accumulation will incur a more expensive cost penalty than today in a not-so-distant future.  
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Abstract 

 

Wind propulsion offers a promising solution for reducing fuel consumption and minimizing 

environmental impact. The high initial costs of these installations pose significant barriers, but 

sharing the investment costs and fuel savings among stakeholders can ease the burden. To achieve an 

efficient cost-saving split, it is essential to accurately assess the actual fuel savings provided by wind 

propulsion during operation, a task that is technically not trivial. A few solutions with differing levels 

of complexity and transparency are offered by OEMs and others. This paper presents an alternative 

approach designed to be economically feasible, independent, robust, and transparent. Other possible 

methodologies are described briefly. 

 

1. Introduction 

 

In recent years, wind propulsion technology has gained significant popularity in the shipping industry. 

Currently, over 50 cargo vessels are equipped with wind propulsion solutions. However, for this 

number to increase and reach a larger portion of the global fleet, several major barriers must be 

overcome. One of the primary challenges is the investment cost of wind propulsion installations. To 

mitigate this, cost-sharing arrangements between owners and charterers, as well as various pay-as-

you-save solutions, have been proposed. While these financial models have been utilized in shipping 

for a long time, assessing the actual savings from wind propulsion once a ship is in operation remains 

challenging. The savings depend heavily on the wind conditions encountered, which vary based on 

the geographical area of operation. Additionally, factors such as the frequency of technology usage, 

idling periods, and ship speed also impact the savings. 

 

To make saving split arrangements or pay-as-you-save models viable, reliable methods for assessing 

actual savings during operation are essential. This paper discusses various methods for assessing 

power savings from wind propulsion during service. These methods can be used for splitting savings 

between stakeholders and for ship owners to monitor the returns on their investments. 

 

Some of the methods discussed are currently in use by the author’s organization, while others are still 

under development. The wind propulsion industry is rapidly evolving, and it is likely that advance-

ments in equipment will soon provide new opportunities for logging and assessing savings. The aim 

of this paper is to present the current state of available methods and to inspire future developments in 

this field. 

 

2. Method 

 

2.1. Overview 

 

The conventional method for assessing the effectiveness of energy-saving measures on a ship 

typically involves logging fuel consumption or performance monitoring. However, this approach 

presents several challenges for wind propulsion installations. The savings from wind propulsion are 

highly dependent on wind conditions, making it difficult for most vessels to identify reference periods 

for comparison. Additionally, retro-fit installations are often carried out alongside other maintenance 

activities, meaning there is no true reference period with all other variables unchanged. For new 

builds, there is, of course, no reference period at all. Therefore, traditional performance logging will 

not be discussed further here. Instead, this paper proposes alternative methods that are better suited to 

isolating the contribution of wind propulsion technology. 
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Fig.1 lists the major physical effects that influence the assessment of power savings from wind 

propulsion. The process begins with the wind, which enables the wind propulsion technology to 

generate a force. However, this force does not directly translate to fuel savings. To convert the thrust 

force into fuel savings, we need to understand the ship's propulsive efficiency (D) and the engine’s 

specific fuel oil consumption. When wind propulsion technology provides thrust, the propeller gets 

off-loaded, altering the propulsive efficiency. 

 

The wind propulsion device generates not only thrust force but also side forces. These side forces 

result in a drift angle and increased rudder angles, leading to additional resistance and changes in 

propeller inflow. 

 

Various options for continuously deriving power savings in service are suggested in Fig.1, either by 

measuring or modelling the mentioned effects. Option 1 is the simplest approach, in which nothing is 

measured in service. The power savings are based on predictions using a generic wind profile or wind 

statistics for a given route. The inclusion of wind propulsion in EEDI IMO (2021), and the Fuel EU 

Maritime are examples of this approach. Options 2 and 3 will be discussed in the following sections. 

Options 4 and 5 require measurement equipment that is not commonly used onboard today. These 

options will not be discussed further in this work, but they may become relevant in the near future. 

 

 
Fig.1: Alternative approaches for in-service monitoring power saving from wind propulsion 

 

2.2. Assessment method based on Wind logging 

 

2.2.1 Process 

 

This method was developed at RISE to address the industry's demand for a cost-effective and robust 

solution. The procedure involves the following four steps, Fig.2: 

 

1. Prediction of power saving  

2. Verification of power saving 

3. Agreement 

4. Operation, data logging and saving estimation 
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Fig.2: The four steps in the basic method for estimating fuel saving from wind propulsion in service 

 

Step 1. Prediction of power saving  

The first step is to predict the power savings of the wind propulsion system under various wind 

conditions, ship speeds, and draughts. The procedure for such predictions is outlined in ITTC 7.5-02-

03-01.9. At RISE, simulations are conducted using the in-house software SEAMAN Winds, which 

can be performed at different confidence levels, Table I.  

 

Table I: Performance assessment levels of confidence vs complexity 

  Typical use Included physics Typical tools 

Level 0 Technology selection Stand-alone unit only, no ship  

Level I Early idea of saving 

potential 
• Generic ship data 

• Simplified physics 

• Database 

• 1DOF PPP  

• Voyage simulation 

 

Level II 

  

Business case, Per-

formance expectation,  

Comparing solutions  

• Side force and yaw balance 

(leeway, rudder angles, 

heel)  

• propeller unloading 

• aerodynamics and hydro-

dynamic forces from empir-

ical/database 

• Fixed route 

• Database 

• 4DOF PPP  

• Voyage simulation 

 

Level III  Business case, Per-

formance expectation 

for contracts 

• Full CFD for aerodynamics 

and hydrodynamics forces 

• Fixed route 

• CFD and/or wind tun-

nel 

• CFD and/or towing 

tank 

• 4DOF PPP  

• Voyage simulation 

Level IV Advanced Perfor-

mance expectation, 

complex cases 

• Weather Routing 

• Dynamic effects  

• Etc 

• CFD and/or wind tun-

nel 

• CFD and/or towing 

tank 

• 4DOF PPP  

• Voyage simulation 

 

Level I involves only empirical models. Level II mostly mid-fidelity tools and Level III requires 

substantial CFD work. Level IV adds complexity of route optimisation.  For the purposes discussed 
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here, we recommended between Level II to IV.  For the purposes discussed here, we recommend 

using levels II to IV. The choice of level depends on the ambition of the involved parties and the scale 

of wind propulsion. For modest power contributions, lower levels may be acceptable. 

 

The simulations produce a Power Saving Matrix, which can be represented as a polar diagram. This 

diagram illustrates the potential of the wind propulsion system to save propulsion power at various 

wind directions and speeds. "Saving" here refers to the comparison with the same ship operating 

without a wind propulsion system, maintaining the same ship speed. 

 

Step 2. Verification of Power Saving Matrix  

The next step is to verify the calculated power savings. This is done using the sea trial methodology 

initially developed by RISE (Werner, 2022) and recently refined into ITTC Recommended Procedures 

7.5-04-01-02. Similar to a conventional sea trial, the sea trial for ships with wind propulsion consists 

of a series of short runs. The main difference is that the outcome is not the absolute value of the 

speed-power curve, but the power reduction due to the wind propulsion system. The effect of the wind 

propulsion system is determined by comparing the speed and power of individual runs with and 

without wind propulsion under the same wind conditions (known as on-off tests). The measured speed 

difference is then converted to a power difference using the shape of the speed-power curve, with 

some corrections for speed variations. 

 

The signals to be measured are the same as for a normal speed-power sea trial: ship’s speed, power, 

wind speed, and direction. Unlike normal procedures, the correction for current, usually based on 

double runs, cannot be applied when wind propulsion is active. To address this, speed trough water is 

measured using the ship’s log if the trial is conducted in an area known to be affected by tidal 

currents. Since the goal is to derive a speed difference, the relatively poor accuracy of speed logs is 

acceptable. 

 

The minimum test program includes five wind angles and can be completed within one day. However, 

the scope can be extended to include a larger number of conditions and can be conducted over a 

longer period during operation. Typically, the crew can conduct the trial in service based on 

instructions from RISE, after an initial trial with RISE personnel onboard. 

 

For ships with significant differences in freeboard height between loading conditions, the power-

saving matrix and its verification should be conducted under more than one loading condition. Trials 

should also preferably be conducted at a range of ship speeds. 

 

The purpose of the sea trial is to verify the calculated Power Saving Matrix. If the sea trial results do 

not match the predicted Power Saving Matrix, the simulation model needs to be updated. However, 

this is not trivial, as deviations can result from various modelling errors. There are no specific 

guidelines for this, and it largely depends on the experience and knowledge of the prediction provider. 

 

3. Agreement 

All stakeholders are now invited to review the 3rd party verification of the predictions. When all 

parties agree, the confirmed Power Saving Matrix is from now on locked. This means that the parties 

do not need to spend further time on arguing or disputing performance claims.  

 

4. Operation, data logging and saving estimation 

It is now time to harvest the savings from wind propulsion. During the operation, the following 

signals are logged onboard:  

 

• Positions and time 

• Loading condition or draft 

• Wind propulsion state (on or off) 

 



 

220 

At regular intervals, for example every 6 month, an independent organisation such as a performance 

monitoring provider or similar, conduct the estimation of energy or fuel saved. This is done in the 

following way: 

 

i. from the logged positions and time, the hind-cast weather is retrieved from an agreed weather 

source (such as ECMWF reanalysis data), for the time events that the wind propulsion system 

was on 

ii. the estimated fuel saving during the period is derived by combining the agreed Power Saving 

Matrix with the hind-cast wind.  

 

A Saving Report as the example in Fig.3 is issued to all partis. 

 

 
Fig.3: Example of Wind Propulsion Saving Report, derived by a 3rd party using a verified perfor-

mance model 

 

2.2.2 Pro and cons of the method  

 

The main merit of this method is that all potentially time-consuming discussions and disputes between 

stakeholders are resolved once and for all in Step 3. After that, the process is very simple and 

transparent. Furthermore, the process does not require any additional instrumentation, making it both 

cost-efficient and robust. Relying on a failing or inaccurate sensor for calculating the savings split is 

not an ideal scenario. 

 

The disadvantage lies in the simplifications of the process. If the sea trial is conducted with a limited 

scope, poor performance in untested conditions may go unnoticed. Additionally, deterioration of 

performance over time due to wear, malfunctioning control systems, etc., will not be detected since 

the verification is conducted only in the initial phase. Moreover, if extensive weather routing is used, 

it is not entirely accurate to derive power savings based on logged weather, as the vessel without wind 

propulsion might sail a different route. 

 

Despite these risks, this method can be a attractive solution, especially for moderate wind propulsion 

systems (wind assistance), offering an attractive balance between cost and accuracy. 

 

2.2.3. Case study 

 

To illustrate the process, we examine a medium range cargo vessel equipped with rotor sails. The 

vessel operates mainly in Europe, with trading pattern as shown in Fig.4. The estimated average 

power saving, based on the process described in Section 3, is shown in Fig.4 (right). Note that the 

saving varies significantly from month to month, depending on the wind that the vessel has met.  
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Fig.5 shows another example case with a similar wind propulsion system installed on a vessel with 

world-wide trade. In some periods, the vessel operates in areas with very low wind speeds, which 

results in low saving or even negative saving, i.e. increased resistance. The latter is due to the rotor 

which on this vessel cannot be tilted. The resulting power saving is significantly different from the 

one estimated with the Global Weather Matrix, a generic wind distribution use for EEDI calculation. 

(In this example, using the Global Weather Matrix gives a higher calculated saving, but it can just as 

well give a lower.) 

 

These examples illustrate that fuel savings from wind propulsion depend heavily on the actual wind 

conditions along the route. For ships not on fixed routes, predicting fuel savings beforehand is 

challenging and relies more on logistical decisions than technical ones. This highlights the importance 

of estimating actual savings based on experienced weather rather than predictions. 

 

  
Fig.4: Estimated power saving from wind propulsion based on hind-cast weather (Operation Case 1) 

  
Fig.5: Estimated power saving from wind propulsion based on hind-cast weather (Operation Case 2) 

 

2.2.4. Uncertainties 

 

An uncertainty assessment should be carried out case-by-case. The largest uncertainty sources are the 

following: 

 

Wind speed. Wind speed is not measured locally on the ship but is obtained from metocean data. 

Comparing hind-cast wind data with anemometer data from various ships shows that local wind may 

deviate from hind-cast data, but these differences average out over time. However, in the context of 

wind propulsion, it is important to remember that the thrust from the sails is proportional to the square 

of the wind speed. While the average wind speed may be accurate, the squared value may not be. For 

example, if the wind speed encountered on route in reality deviates by ±10% from the metocean data 

but the mean is correct, the bias error on the squared wind speed is +1%. This means the thrust force 
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from the wind propulsion device will be overestimated by 1%, if it is computed using the wind in each 

time step. This known effect can be compensated for. 

 

Wind direction. Similar to wind speed, the wind direction from metocean has been found to match the 

local wind measured onboard ships on average. Within a ±10° range, the wind propulsion thrust is 

nearly linear with respect to the wind direction. Therefore, if the average wind direction is accurate, 

any errors caused by local deviations are likely to cancel out over time. 

 

Performance model incorrect. If the Power Saving Matrix is inaccurate, the estimated fuel savings 

will also be inaccurate. The Power Saving Matrix is verified through on-off tests conducted during a 

limited sea trial period. The uncertainty of the sea trial campaign must be assessed on a case-by-case 

basis. This uncertainty depends on various factors, including the measurement equipment, the 

presence of currents in the sea trial area, and, most importantly, the range of tested wind speeds and 

directions, ship speeds and drafts. 

 

Wind propulsion system degradation. Since the Power Saving Matrix is only verified once, the 

method will not capture degradations of the wind propulsion system or malfunctioning sensors. The 

uncertainty of this effect is difficult to estimate. Parties concerned about this issue can request 

additional sea trial verifications at regular intervals. 

 

Drift of total propulsive efficiency D. The power saving is approximately proportional to the wind 

propulsive thrust times ship speed divided by D. If D changes with time due to fouling, this will 

affect the amount of power saving that the wind propulsion system generates for the same thrust. 

Again, the uncertainty of this effect is difficult to estimate. Parties concerned about this issue can 

request additional sea trial verifications at regular intervals. 

 

2.3. Assessment method based on force logging (level I) 

 

2.3.1. Process 

 

Several providers of wind propulsion solutions now include equipment for measuring the forces 

generated by their devices. This is a relatively new development area, and there is still limited 

published information on the accuracy and reliability of these measurements. Nevertheless, this is a 

clear trend, and we can expect to see more of this in the coming years. 

 

A challenge in using force measurements is that the wind propulsion thrust must be converted to 

propulsion power savings. The main factors affecting this conversion are the ship's propulsive 

efficiency (D) and the wind propulsion side force, which generates added resistance due to drift and 

increased rudder angles. Additionally, the wind propulsion device may alter the vessel's aerodynamic 

drag, resulting in increased or decreased windage. This effect is not well studied yet, but the authors' 

experience so far suggests that it is secondary. However, more research is needed. 

 

As of now, there are no published guidelines on how this conversion should be done. Below is a 

suggested approach, though it should be noted that it has not yet been validated in real-life trials. 

 

The proposed procedure involves the following four steps: 

  

1. Predict the power saving using a Power Prediction Program simulation (Level III) as de-

scribed in Section 2.2 above. From the result, derive a Force-to-power-saving conversion ta-

ble by listing the result in table containing [Ship speed; Sail-Thrust-force; Sail-Side-force; 

Ship power-saving] 

2. Verify the Force-to-power-saving conversion table in real life using a number of on-off tests 

(using ITTC 7.5-04-01-02) and comparing with the device’s force measurement. Adjust the 

conversion table if the result does not match. 
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3. During service, log continuously the following quantities: [Ship speed;  Sail-Thrust-force; 

Sail-Side-force;]. After filtering and averaging over a suitable time step, use the conversion 

table to convert the measured force to power-saving in kW. 

4. Accumulate the derived power-savings over time to give the energy saving. 
 

2.3.2. Case study 

 

The two ships shown in Fig.6 are used to demonstrate the method. Case A has a moderate installation 

of rotors sails that gives on average around 7% saving. Case B has a relatively powerful installation of 

wing sails, giving around 40% savings on average. Fig.7 shows the surface representation of the 

conversion table for one ship speed. This illustrates that the surface is regular and suitable for 

interpolation.  

 

  
Fig.6: Test case A and B 

 

 
Fig.7: Visualisation of conversion tables for translating wind propulsion thrust force (Fx) and side 

force (Fy) to power saving. Left for Case A with moderate power saving and right for Case B 

with substantial power saving from wind propulsion compared to its ship size.  

 

2.3.3. Pro and cons of the method  

 

The primary benefit of continuously logging the wind propulsion device force is that the actual 

contribution is monitored. This method will detect performance decreases due to malfunctioning 

sensors, control systems, or other unforeseen degradations over time. However, the disadvantage is 

the need to install and rely on advanced measurement equipment.  

 

2.3.4. Uncertainties 

 

Just as with the previous method, an uncertainty assessment should be carried case-by-case. The 

largest uncertainty sources are the following: 

 

Wind propulsion thrust force. The primary source of uncertainty in this method is the thrust force 

measurement. Currently, there are no publications specifically addressing the accuracy of thrust force 

measurements. As this is a new technical area, more knowledge is expected to emerge soon.  
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Wind propulsion side force. The measured side force is used to correct power savings due to added 

resistance from drift and rudder angles. These are secondary effects, so the accuracy of the side force 

measurement is not as critical as that of the thrust force. The side force has a minor effect on power 

savings for ships with small wind propulsion contribution, such as Case A. However, it can have a 

significant impact on ships with powerful installations or poor yaw balance, like Case B. Whether side 

force measurements are critical or not can easily be check by comparing results from a PPP in 1DOF 

and 3DOF. 

 

Ship speed. If the speed log of the actual ship is unreliable, the Speed Over Ground (SOG) can be 

used. Errors due to currents are likely to even out over time. For small or moderate wind propulsion 

installations, the relationship between power saving and speed is smooth and well suited for 

interpolation. Scatter in speed is likely to even out if the average speed is correct over time. However, 

for ships affected by side force at low speeds, such as in Case B, accurate ship speed measurements 

are more important. 

 

Conversion table inaccuracy. The conversion table is verified through on-off tests conducted during a 

limited sea trial period. The uncertainty of the sea trial campaign must be assessed on a case-by-case 

basis. This uncertainty depends on various factors, including the measurement equipment, the 

presence of currents in the sea trial area, and, most importantly, the range of tested wind conditions, 

drafts, and speeds.  

 

Drift of total propulsive efficiency D. The D is assumed to be constant and assessed through on-off 

tests during the limited sea trial period when the conversion table is verified. As was discussed earlier 

in section 2.2.4, the change of D over time is not known in general. This could be arranged by using 

a propeller thrust sensor (leading to method Force logging II mentioned in Fig.1) 

 

4. Conclusions 

 

This paper discusses the continuous assessment of power savings from wind propulsion technologies, 

which is essential for ship owners to monitor the returns on their investments and for cost-sharing 

arrangements between owners and charterers. 

 

Two methods for assessing power savings from wind propulsion during service are examined. The 

first method utilizes hind-cast wind data combined with a performance model. By confirming the 

performance model through a limited sea trial period conducted by a third party, the risk of 

contractual disputes between stakeholders during service is minimized. This method is robust and 

cost-effective but involves some approximations. 

 

The second method involves force measurements on the wind propulsion devices, requiring the 

conversion of force to power saving or fuel savings. This method captures performance changes over 

time but also relies on some modelling, which needs to be confirmed through on-off tests during a 

limited sea trial period. 

 

Delivering these solutions to the shipping companies requires collaboration between several actors: 

wind propulsion makers to deliver the equipment, performance monitoring and hind-cast weather 

providers to acquires and post-process logs and wind data, and 3rd party institutes to calculate and 

verify the performance models. 

 

The development of wind propulsion technologies is new and rapidly evolving. More research is 

needed on the uncertainties of sea trial methods and the accuracy of force measurements. 
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Abstract 

 

Within 90POE’s OpenOcean STUDIO maritime platform, we use three core models for performance 

monitoring and optimisation: digital twins for vessel propulsion, performance degradation modelling, 

and speed-fuel consumption curves under good weather conditions. In this paper, we discuss each 

model and the advantages of employing multiple distinct models to address our clients’ needs. The 

challenges inherent in validating such models are explored, along with the novel quantitative and 

qualitative methods developed to ensure their reliability. Case studies are presented to illustrate the 

practical benefits of these approaches, followed by an examination of challenges encountered during 

their implementation and a discussion of future directions for research and development in vessel 

performance monitoring. 

 

1. Introduction 

 

In today's maritime industry, optimising vessel performance is critical for both efficiency and 

sustainability. This is driven by fluctuating oil prices, stringent emissions regulations, and the 

introduction of emission trading schemes. By leveraging the increasing availability of large datasets, 

advancements in cutting-edge machine learning techniques, and greater computing power, the 

industry can better understand, predict, and optimise vessel performance to reduce operating costs and 

emissions. This includes predicting vessel degradation, scheduling maintenance, and improving 

carbon trading positions, ultimately leading to a more efficient and sustainable maritime sector. 

 

Optimising vessel performance offers numerous benefits, including lower operational expenditures 

(OPEX) and higher profitability. Additionally, it reduces the environmental impact of sailing and 

mitigates the societal impact of maritime cargo operations. 

 

At 90POE, we have developed OpenOcean STUDIO, a next-generation maritime software platform 

designed to accelerate the industry’s journey toward a more efficient, competitive, and sustainable 

future. Central to this mission is the deployment of accurate and trustworthy data-driven models that 

underpin vessel performance optimisation services. Through extensive research and development, we 

have created advanced digital models that include digital twins for vessel propulsion systems, 

performance degradation modelling to account for factors like hull fouling and engine wear, and 

speed-fuel consumption curves calibrated for good weather conditions. 

 

These models allow for the precise analysis and optimisation of propulsive efficiency, enabling 

proactive maintenance strategies and performance management, as well as crucial insights for voyage 

planning and fuel optimisation. Seamlessly integrated within OpenOcean STUDIO, the digital models 

provide the foundation for a suite of tools within the platform that enable customers to make data-

driven decisions to improve operational efficiency, enhance competitiveness in the market, and 

contribute to a more sustainable maritime ecosystem.  

 

In this paper, we will provide an overview of these data-driven models and expand on the working 

principles of each. We will then elaborate on typical use cases, discussing the strengths and 

shortcomings of each model. Furthermore, we will present case studies where different models are 

utilised to predict and/or evaluate using the same underlying historical ship data, highlighting the 

differences in results and discussing their practical implications in terms of reducing emissions, 

improving chartering, and optimising maintenance activities. 
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2. Background 

 

This section provides an overview of the scientific literature pertinent to this paper. First, 

methodologies relevant to digital twins for predicting power and fuel consumption will be reviewed. 

Following that, the topic of hull and propeller fouling will be examined, along with the various 

performance degradation digital twin approaches currently implemented in different settings. Finally, 

the above findings will be summarised to identify the current trends and gaps, and explain the 

motivation for the family of digital twins we have developed. 

 

Coraddu et al. (2017) conducted a study comparing white, grey, and black box models to estimate the 

fuel oil consumption of a Handymax chemical/product tanker. White box models rely on physical 

process knowledge, while black box models use statistical methods and historical data. They found 

that grey box models, which combine both approaches, are particularly effective at forecasting fuel oil 

consumption, even with limited historical data. Cai et al. (2024) support this statement, noting that 

grey box models can achieve higher accuracy using less data than black box approaches. Similarly, 

Ma et al. (2023) performed a similar comparison to conclude that combining grey-box modelling with 

the SHAP (SHapley Additive exPlanations) framework allows the identification of the most 

influencing inputs to the model.  

 

Additionally, Gkerekos et al. (2019), Chen et al. (2024) investigated black box models and concluded 

that, given enough data, they can be effective predictors of a vessel’s fuel consumption. Similarly, 

Jiang et al. (2025) and Salazar et al. (2024) present cutting-edge black box approaches that improve 

model accuracy in vessel performance modelling applications. 

 

In terms of vessel degradation, Themelis et al. (2024) trained tree-based models to predict fuel 

consumption, including a days-since-drydocking feature allowing them to capture the effect of 

biofouling on vessel performance. In an earlier approach, Coraddu et al. (2019) used unsupervised 

machine learning models based on Support Vector Machines and k-nearest neighbour algorithms to 

diagnose hull and propeller fouling conditions, noting that this approach does not require labelled 

training data. Huang et al. (2024) combined a Genetic Algorithm (GA) with Long Short-Term 

Memory (LSTM) networks to combine the temporal benefits of LSTM networks with physics-

informed feature engineering based on the GA.  

 

From the above, it is evident that there is significant research interest in the field of digital twins for 

predicting power and fuel consumption. The variety of approaches, ranging from white, grey, and 

black box models to cutting-edge machine learning techniques, underscores the complexity and 

importance of this research area. This diversity not only makes it a compelling research question but 

also highlights its critical relevance to consumers and industry stakeholders. Accurate predictions of 

fuel consumption and vessel performance can lead to substantial cost savings, improved operational 

efficiency, and reduced environmental impact, making this an essential focus area for the future of 

maritime operations. These motivations have driven 90POE to develop a family of performance-

oriented digital twins that can accurately influence performance-related decision-making at all levels. 

 

3. Methodology 

 

This section outlines the suite of performance-oriented digital twins developed and utilised at 90POE. 

We will detail their distinct inputs and outputs, highlighting their unique advantages and limitations. 

This approach will demonstrate the necessity of maintaining a diverse set of digital twins rather than 

relying on a single, generalised model. At 90POE, we have created specialised digital twins for three 

key purposes: quasi-physical digital twins for vessel propulsion modelling, models for accurately 

tracking performance degradation (including hull and propeller fouling) over time, and speed-fuel 

curves under good weather conditions. Each of these models will be examined in the following 

sections, illustrating their individual contributions and the overall benefit of employing a 

comprehensive array of digital twins to enhance maritime efficiency, competitiveness, and 

sustainability. 
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3.1. Vessel Propulsion Digital Twins 

 

The aim of the Vessel Propulsion Digital Twins (VPDTs) is to predict power, fuel consumption and 

engine RPM given a vessel’s speed, draft and the ambient sailing conditions. This is achieved by 

combining a physical propulsion model with knowledge mined from historical sailing data of that 

vessel.  

 

Combining a physics-first model with historical observations reduces the requisite data points and the 

corresponding collection window, allowing for better and more localised propulsion models. 

Moreover, unlike a black-box model, being bounded by a physical model ensures the model remains 

physically reasonable outside of the areas covered by training data while also increasing model 

explainability. At the same time, the use of historical observations allows us to build models tailored 

to specific vessels with accuracy beyond what would be achievable by a traditional first-principles 

model and without having to resort to full hydrodynamic modelling.  

 

The VPDT model has distinct, physics-first components that capture a vessel’s calm water, wind, and 

wave resistance. These components have weights that depend on a vessel’s principal particulars. 

Furthermore, they also have weights that are learnt or fine-tuned through machine learning, based on 

the vessel’s historical data points.  

 

3.2. Performance Degradation Digital Twins 

 

The aim of the Performance Degradation Digital Twins (PDDTs) is to assess the day-to-day 

performance and performance degradation of vessels, leveraging the quasi-physical modelling of the 

VPDT. Using the well-tested, well-explainable VPDT as the backbone of PDDT allows us to retain 

more data and increase responsivity and historic coverage compared to developing a new, greenfield 

offering.  

 

As the direct output of the PDDT and its residuals have some inherent noise due to noise in its inputs 

(e.g. weather hindcast errors, GPS noise, temporary measurement issues) it is too noisy to provide 

actionable information. For this reason, a Kalman filter layer has been implemented to smooth the 

noise and provide more trustworthy results.  

 

At a high level, PDDT translates VPDT residuals into a vessel performance indicator. This, of course, 

means that residuals become a measure of the impact of unknown factors, that cannot be decoupled. A 

variation in model residuals could be ascribed to several reasons, inter alia: long-term hull/propeller 

degradation, short-term hull/propeller degradation (e.g. due to prolonged port stays in warm water), 

temporary vessel issues (e.g. propeller catching fishnets), or unflagged and unfiltered sensor issues.  

 

3.3. Speed-Fuel Curves 

 

The purpose of the Speed Fuel Curves (SFCs) is to address a question similar to that of the combined 

Vessel Propulsion Digital Twin (VPDT) and Performance Degradation Digital Twin (PDDT) models: 

determining the amount of fuel a vessel would consume at a given draft and speed. However, unlike 

the VPDT and PDDT models, which require precise output values, the SFCs aim to provide a reliable 

"ballpark" estimate under the assumption of good (Beaufort Scale less or equal to 4, Douglas Sea 

State less or equal to 3) weather conditions. This approach can be based on noon report data 

corresponding to short data collection windows, allowing for easier adoption. If high-frequency data 

are available, input data can be cross-checked for accuracy. The data are used to shape a 3D physics-

informed surface that links draft, speed, and power/fuel/RPM. Meanwhile, the model’s straight-

forward nature ensures extensive explainability. 

 

The motivation for this model is to increase the accuracy of charter pricing, enabling ship managers to 

make data-informed decisions regarding the optimal vessel selection for specific tasks, and to evaluate 

vessel performance through time snapshots. 
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3.4. Maritime Efficiency - The Sum is Greater than the Parts 

 

Starting from the same dataset, the information can be presented in three distinct ways to tell different 

stories. First, it can illustrate the average vessel performance, ignoring the effects of fouling, based on 

a comprehensive list of inputs. This provides a baseline understanding of how the vessel operates 

under ideal conditions. Second, the data can highlight the percentage increase in power required from 

the baseline due to fouling, offering insights into the impact of hull and propeller degradation over 

time. These two can be combined to create a highly accurate vessel performance digital twin with a 

strong temporal element. Third, it can show the vessel's current performance over a 6-12 month 

window in good weather conditions, giving a snapshot of its operational efficiency in recent times. 

 

When combined, these perspectives offer a holistic view of the vessel's power and fuel consumption, 

the effects of hull and propeller degradation, and fouling impacts. This comprehensive analysis not 

only aids in understanding the vessel's current state but also provides valuable chartering estimates for 

the short-term future. By integrating these different aspects, ship managers can make more informed 

decisions regarding maintenance, operations, and chartering, ultimately enhancing the vessel's 

performance and profitability. 

 

3.5. Validation 

 

Even for physics-informed models, there is a risk of overfitting to the training data or becoming 

inaccurate or biased due to sensor issues. To mitigate these risks, we utilise virtual sensors based on 

different data sources to correct, if possible, or discard readings flagged as unreliable. Additionally, 

we have built a suite of physicality validation tools designed to stress-test our models and ensure that 

the results adhere to physical first principles across a wide range of scenarios. 

 

We also perform cross-testing across different voyages to avoid training and testing on the same 

voyage, ensuring robust model validation. In cases of performance degradation, we use noon report 

fuel consumption data to validate the overall performance history. Furthermore, extreme cases are 

flagged for further investigation, suspecting sensor issues. 

 

For speed-fuel curves, we have developed a bespoke validation system that considers both high- and 

low-frequency observations to ensure our predictions remain accurate. This system helps us maintain 

the reliability of our models by serving only high-confidence areas within the 3D draft, speed and 

power/fuel/RPM space. 

 

4. Application Description 

 

In this case study, we select a Cape size vessel and apply our three distinct digital twin models using 

the same pool of input data points. By leveraging the Vessel Propulsion Digital Twins (VPDTs), 

Performance Degradation Digital Twins (PDDTs), and Speed-Fuel Curves (SFCs), we aim to 

demonstrate how different perspectives can tell unique stories about vessel performance. 

 

We begin by providing a general description of the vessel and an overview of the input dataset. 

Following this, we delve deeper into the methodology discussed earlier, elaborating on how each of 

these models was specifically applied in this case study. This approach will highlight the practical 

application of our models and underscore the importance of using a diverse set of digital twins to 

capture the multifaceted nature of vessel performance. 

 

4.1. Vessel Description & Dataset EDA 

 

A Cape size vessel has been selected for this case study; however, due to confidentiality constraints, 

its exact details and principal particulars cannot be shared. Instead, typical principal particular ranges 

for Cape size bulk carriers are provided: length between perpendiculars of about 290 m, design speed 

of 13 to 15 knots, breadth of around 45 m, draft of around 18 m, and a depth of around 24 m.  
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The data sources used include noon reports, Automatic Identification System (AIS) data, weather 

hindcasts, and high-frequency (HF) data collected at minute intervals and averaged into 10-minute 

windows before analysis. To ensure the accuracy of our analysis, we filter out data during periods of 

manoeuvring and slow steaming. Additionally, we validate and cross-check data from multiple 

sources to correct any discrepancies when possible and exclude any unreliable readings. 

 

In total, this case study utilises approximately 6.5 years of data, spanning from about 2 years prior to 

the vessel's last dry docking to roughly 4.5 years afterward.  

 

4.2 Model Training 

 

In this case study, the VPDTs were trained using one year of data, specifically the most recent 12 

months of the available dataset. Speed-fuel curves are trained in rolling 6- and 12-month windows to 

balance the trade-off between accuracy and responsiveness to changes. For clarity, only the curves 

based on 12-month windows are displayed to reduce graph clutter. Finally, the PDDTs use the same 

underlying model as the VPDT, meaning the most recent 12 months of data serve as the performance 

baseline, aligning with VPDT predictions. 

 

4.3 Model evaluation 

 

For model evaluation, we adopted the symmetric mean absolute percentage error (SMAPE) due to its 

balanced treatment of forecast errors and robustness to edge cases. Unlike traditional MAPE, which 

becomes unstable with near-zero actual values, SMAPE normalises absolute errors by the average of 

actual and forecasted values. This ensures symmetry between over- and under-predictions and bounds 

errors within a 0–200% range, preventing skewed results from small denominators. SMAPE is 

defined as: 

SMAPE =  
100

𝑛
∑

|𝐹𝑡 − 𝐴𝑡|

(|𝐹𝑡| + |𝐴𝑡|)/2

𝑛

𝑡=1

 

where 𝑛 is the number of points available, 𝐴𝑡 is the actual value observed and 𝐹𝑡 is the value 

predicted by the model. 

 
Fig.1: Vessel performance degradation as captured by our Performance Degradation Digital Twin 

(PDDT). Dry-Dockings (DDs) are marked with solid black vertical lines, and Under-Water Cleaning 

(UWC) events with dashed grey vertical lines. 
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SMAPE’s key advantage lies in its equitable assessment of prediction deviations: errors of equal 

magnitude receive identical penalties regardless of direction. This symmetry avoids biases inherent in 

MAPE, which disproportionately penalises under-predictions when actual values are small. 

Additionally, the bounded error scale enables consistent cross-model and cross-dataset comparisons, 

even with volatile baselines, while maintaining sensitivity to meaningful deviations. 

 

5. Application Results & Discussion 

 

Having trained the models as described in Section 4.2 above, the results obtained can be evaluated, 

both independently and in relation to one another.  

 

Starting with the PDDT, Fig.1 displays the estimated percent power increase due to vessel 

performance degradation through time, with cleaning events superimposed on the graph. The daily 

KPI (grey dots) can still be noisy, as described in 3.2. However, the final power increase curve tracks 

degradation events well, with a minimal amount of noise present, mostly due to weather hindcast and 

sensor inaccuracies as well as ambient conditions and fuel variations. In the plot, the curve is shown 

with a 7-day delay: this is the typical delay we use to back test the corrected model performance in 

hindsight without introducing look-ahead bias in the metrics. 

 

Fig.2 and Fig.3 both focus on the performance of the VPDT, with and without the PDDT contributing 

performance degradation multipliers. More specifically, Fig.2 shows a SMAPE time series achieved 

first by the VPDT and then by the combination of VPDT and PDDT. As with the PDDT graph above, 

a 7-day lag has been applied to the PDDT forecasts. As expected, the SMAPE of the pure VPDT, 

which was trained on the last year of sailing data, fluctuates significantly over the 5.5 years of the 

timeline shown, with lower SMAPEs observed towards the end of the time series as that was the 

training window. Similarly, the two years before the DD exhibit relatively low errors, indicating 

vessel performance similar to the training window. Unsurprisingly, a high SMAPE is observed during 

the first two years post-DD as the vessel performance changes significantly during that period. Over 

the entire period presented, the VPDT model achieved a mean SMAPE of 7.07% and a median 

SMAPE of 6.50%. 

 

 
Fig.2: Symmetric Mean Absolute Percentage Errors (SMAPEs) achieved by our Vessel Performance 

Digital Twin (VPDT) with and without the inclusion of the Performance Degradation Digital 

Twin (PDDT). Dry-Dockings (DDs) are marked with solid black vertical lines, and Under-

Water Cleaning (UWC) events with dashed grey vertical lines. 
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In the case of the combined VPDT and PDDT, the SMAPEs observed are both lower and evenly 

distributed, as there is no significant time-dependent variation in the errors. In this case, the combined 

models achieved a mean SMAPE of 4.77% and a median SMAPE of 3.92%. 

 

A handful of higher-than-usual errors can be observed in both the VPDT and the combined VPDT and 

PDDT models. These can be attributed to weather hindcast anomalies and other localised sensor 

issues. 

 

 
Fig.3: Comparison between Actual and Vessel Performance Digital Twin (VPDT)-predicted powers 

through time with (top) and without (bottom) the inclusion of Performance Degradation 

Digital Twin (PDDT). Dry-Dockings (DDs) are marked with solid black vertical lines, and 

Under-Water Cleaning (UWC) events with dashed grey vertical lines. 
 

The results above are corroborated by those presented in the graph of Fig.3. This graph presents the 

same time series as above, but instead of comparing the SMAPEs, it compares the actual powers to 

the power predictions, first of the combined VPDT and PDDT model and then for the VPDT model 

on its own. To maintain vessel anonymity and facilitate results comparison, the y-axis is expressed in 

terms of % MCR instead of traditional power units. In the case of the pure VPDT model, as expected, 
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a power overestimation can be observed in the time window that follows the DD. This is, again, 

justifiable by the model being trained on the last year of data, i.e., a heavily degraded vessel 

condition. In the case of the combined VPDT and PDDT, the errors are significantly smaller and 

without any noticeable bias. 

 

 
Fig.4: Comparison between speed-fuel curves corresponding to different time windows pre- and 

post-DD. The solid black lines represent data from a 12-month window immediately following 

the dry docking (DD), while the dotted blue lines show later curves, and the red hues indicate 

curves from periods before the DD. Lighter hues denote earlier time windows. 

 

Finally, Fig.4 illustrates the speed-fuel curves’ progression over time, with the vessel's two principal 

load conditions shown separately in the sub-plots. The solid black lines represent data from a 12-

month window immediately following the dry docking (DD), while the dotted blue lines show later 

curves, and the red hues indicate curves from periods before the DD. Lighter hues denote earlier time 

windows. To maintain vessel anonymity and facilitate comparisons between the two conditions, both 
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the x and y axes have been normalised against a nominal sea-trial data point. Additionally, the x-axis 

span of different curves varies depending on the operational profile followed by the vessel during the 

given time window. 

 

As expected, the speed-fuel curve for the period immediately after the DD shows the lowest Daily 

Fuel Oil Consumption (DFOC) in both load conditions. A gradual increase in DFOC can be observed 

in the windows before and after the DD for both load conditions. The current vessel DFOC is higher 

compared to the last windows before the previous DD, indicating that another DD would be highly 

beneficial at this point. Furthermore, the fact that the post-DD speed-fuel curves quickly reached and 

then exceeded the pre-DD DFOC could provide actionable feedback to ship managers regarding the 

quality of paint chosen, assuming other factors (e.g., long port stays) can be ruled out.  

 

Comparing the vessel performance in Fig.4 to that in Fig.1, we observe similar trendlines with one 

notable exception. In Fig.1, the vessel maintains comparable performance conditions at both the 

beginning and end of the timeline. However, for the SFCs produced, the vessel shows more 

significant degradation towards the end of the timeline. This difference arises because PDDT operates 

in power-space, while SFCs function in fuel service. Once measurement issues are excluded, this 

observation can help identify potential engine degradation. 

 

6. Conclusions 

 

This study has demonstrated the effectiveness of using a suite of performance-oriented digital twins to 

optimise vessel performance. By leveraging the Vessel Propulsion Digital Twins (VPDTs), 

Performance Degradation Digital Twins (PDDTs), and Speed-Fuel Curves (SFCs), we have shown 

that different models can provide unique insights into vessel performance, each contributing to a 

comprehensive understanding of the vessel's operational efficiency. 

 

The results highlight the importance of explainability in Machine Learning models, which we achieve 

through rigorous validation and sensitivity analysis. This ensures that our models remain trustworthy 

and reliable, even when applied to complex real-world scenarios. The use of multiple specialised 

models, rather than a single generalised model, allows us to maintain high accuracy and reliability, 

addressing specific aspects of vessel performance without compromising the integrity of the overall 

analysis. 

 

These models are crucial for making informed decisions about vessel maintenance, such as 

determining the optimal timing for hull and propeller cleaning to maintain efficiency. Additionally, 

they can be used for route optimisation, ensuring that vessels operate under the most favourable 

conditions to save fuel and reduce emissions. The Speed-Fuel Curves (SFCs) also play a vital role in 

charter party agreements by providing accurate estimates of fuel consumption under various 

conditions, aiding in better contract negotiations and operational planning. 

 

Looking ahead, there are several exciting areas for future research. One key area is improving sensor  

reliability and developing methods to trust and validate sensor data. Additionally, leveraging our 

extensive dataset to create typical models for vessels based on their principal particulars could further 

enhance the accuracy and applicability of our digital twins. These advancements will continue to drive 

the maritime industry towards a more efficient, competitive, and sustainable future. 

 

In conclusion, the integration of advanced Machine Learning models in maritime operations is not just 

a glimpse into the future but a necessary step towards achieving significant operational improvements. 

By continuously refining our models and exploring new research avenues, we can ensure that the 

maritime industry remains at the forefront of technological innovation. 
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Abstract 

 

Ship owners, operators, charterers, suppliers and regulators share a profound interest in reducing 

fossil fuel consumption and associated emissions. The fuel consumption of a vessel is closely linked to 

numerous technical, operational and weather-related factors. The actual performance of a vessel in a 

given situation is highly dependent on the technical state of the vessel and the effect of the weather. 

Traditionally, vessel performance analyses have been tainted with large uncertainties. However, today 

it is possible to get high-frequency, high-quality weather data and this enables new levels of insight 

into how vessels perform in real-time. Additionally, the recently published Vessel Technical Index (VTI) 

recommended practice offers an accurate and transparent method for measuring, evaluating, and 

verifying the technical performance of ships in service. This paper investigates the effect of propeller 

cleaning events by utilizing accurate speed through water and sea state data as input into a VTI 

analysis. With this solution, performance improvements down to a few percent could be accurately 

identified within just a day of sailing after the cleaning. Furthermore, the implications of this approach 

in analyzing the effectiveness of energy saving devices are also discussed.  

 

1. Introduction 

 

Vessel performance is a critical aspect of maritime operations, directly influencing resource usage, 

operational efficiency, environmental impact and overall operational costs. With increasing pressure 

on the maritime industry to optimize fuel consumption, reduce emissions, and improve profitability, 

understanding and managing vessel performance has become more important than ever. Accurate data 

is at the heart of these efforts, enabling operators to make informed decisions that enhance vessel 

operations and ensure compliance with environmental regulations. 

 

Reliable data on parameters such as speed, fuel consumption and sea state is essential for accurate 

performance assessment and optimization. However, the challenge lies not only in the collection of 

such data but also in its interpretation and application. Inaccurate or incomplete data can lead to 

misguided decisions, resulting in inefficiencies, higher costs, and potential regulatory non-compliance. 

Therefore, maintaining the integrity and precision of performance data is a fundamental requirement 

for improving the sustainability and competitiveness of the maritime industry. 

 

IMO has introduced a vessel design efficiency index (EEDI/EEXI) and an operational index (CII). The 

EEDI/EEXI addresses the vessel efficiency when the vessel was delivered from yard, but the 

EEDI/EEXI only vaguely indicate the efficiency of a vessel in operation, which can be influenced by 

hull and propeller deterioration, fouling and retrofit of energy saving devices. The CII is an operational 

index, which is mainly determined by vessel loading, operational speed, duration of port stays, weather 

etc. The CII is influenced by the technical efficiency of the vessel, but operational decisions are 

overshadowing the technical efficiency of the vessel. 

 

DNV (2023) published a Recommended Practice (RP) proposing a Vessel Technical Index (VTI) as a 

complementary measure. The VTI is pinpointing the technical performance of a ship relative to a 

reference baseline, e.g. the newbuilt state, thereby eliminating the influence of external operational 

factors such as the weather and the loading condition. In addition, the VTI RP includes a novel approach 

for assessing the relevant sources of uncertainty, enabling the users to take informed decisions based 

on the VTI calculations. 
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The VTI approach is centered around investigating how the propulsion power of the vessel is transferred 

to a set of consumers. While the propulsion power is moving the vessel, a significant amount of shaft 

power may also be lost in countering the effects of the waves in situations with bad weather. The amount 

of power lost to waves depends on wave height, direction and period. In situations with several wave 

systems present, each wave component will result in a certain amount of power lost to waves. In some 

situations, there can even be a positive effect from the waves, e.g. the waves contribute positively to 

the forward motion of the vessel.  

 

The situation is similar for wind, which can have a considerable impact on the forward motion of a 

vessel. The effect varies with the wind magnitude and direction. The wind power can be both negative 

and positive, as is obvious for sailing vessels. For vessels with wind assisted propulsion (WASP) the 

effects of the wind can be very significant. For such vessels, a VTI analysis can reveal crucial 

information about the efficiency of the WASP technology in various operational scenarios. Such work 

is currently ongoing but is beyond the scope of this paper. 

 

The depth of the water also influences the amount of power required to move a vessel forward. In areas 

with low depth (up to 5-10 times the mean draft of the vessel), more power is required to move the 

vessel forward than in deep water areas. Furthermore, the ocean water temperature and salinity 

influence how much power is needed to maintain a certain speed through the water.  

 

In addition to the above, power can be lost by vessel navigation, i.e. when the vessel changes speed or 

course. Changing the trim state (i.e. the difference between forward and aft draft) may also influence 

the vessel and the amount of power required to propel the vessel forward.  

 

There is a need to subtract the influences of the environment and vessel navigation in order to arrive at 

the actual, technical vessel performance. The removal of weather effects is normally referred to as 

weather normalization, and a specific approach is defined in the DNV RP. Similarly, the normalization 

procedure for the effects of water temperature and water salinity is also described in this document.  

 

Similarly, navigational effects can be removed by removing time periods where the vessel is changing 

speed or course. Due to the inherent time lag in such a system, there might be a need to also remove a 

certain time period (e.g. 30 minutes) after the change in order to allow the vessel speed to settle. 

 

A VTI analysis should be accompanied by high-frequency, high-accuracy data to gain the full benefit 

from the methodology. The following data is required to calculate the VTI:  

 

• Directional wave spectrum (alternatively wave height, period and direction) 

• Speed Through Water (STW) 

• Speed Over Ground (SOG) 

• Vessel heading 

• Wind magnitude and direction (corrected to 10 m height above the sea level) 

• Water temperature and (if available) salinity 

• Water depth 

• Shaft power 

• Shaft revolutions 

• Vessel draft 

 

The VTI analysis can be performed in real-time if a sufficiently advanced vessel performance system 

is installed, like the Miros VTI service based on real-time, high frequency, accurate data combined with 

a full implementation of the DNV RP. Alternatively, the VTI can be performed in retrospect.  

 

Some results from using the VTI approach have already been published Bertelsen (2021), Guo (2021), 

Bertelsen (2022). Gupta (2023a) found that the uncertainty in a VTI analysis could be significantly 

reduced by using accurately measured sea state data as compared to using less accurate data combined 
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with hindcast data. Similarly, Bertelsen (2022) showed a large difference in accuracy between using 

accurately measured data and relying on hindcast data. Gupta (2023b) further analyzed the uncertainty 

in VTI using Principal Component Analysis (PCA). 

 

 
Fig.1: The VTI calculation process 

 

This paper investigates the effect of two propeller cleanings by performing a VTI analysis. The 

approach combines accurate, high-frequency data on wave, STW and wind with the latest advances in 

weather normalization methods as described by the DNV RP. In this way, the effect of the propeller 

cleaning can be isolated from the influence of the weather and other disturbances. In essence, this in 

practice corresponds to performing a continuous sea trial so that the before and after situations can be 

quickly compared. 

 

2. Measuring waves, currents and STW based on imaging X-band radar 

 

Radar-based sea state measurements have made significant improvements during the last decade 

Gangeskar (2017,2018a,b,c,2019,2021). The latest solutions in radar-based sea state measurements can 

measure both ocean waves, ocean currents and STW accurately under widely varying conditions and 

with high availability and reliability.  

 

The Miros Wavex solution bases its measurements on radar images covering local areas of interest, in 

a distance of a couple of hundred meters in front of the vessel. The images are processed using dedicated 

algorithms to obtain real-time wave spectra, integrated wave parameters, surface current vectors and 

STW data, Prytz (2019), Svanes Bertelsen (2020). 

 

Specialized DNV type-approved hardware is connected to the analog video signal output from a marine 

navigation X-band radar to obtain digitized images. Digitized images can also be acquired directly from 

radars with digital data output (Internet Protocol radars). In addition, Wavex utilizes certain radar image 

metadata from a GPS and a gyro compass. For further details on the basic components of a Wavex 

system on a moving vessel, refer to Prytz (2019) and Svanes Bertelsen (2020). 

 

3. Analyzing the effect of propeller cleanings  

 

The VTI analysis was performed for two cargo vessels using the following equipment and services: 

 

• Miros Wavex for measurement of directional wave spectra and speed through water 

• Miros Edge platform for collection of propulsion data 

• Miros VTI service for automatic calculation of the VTI  
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The Miros onboard system also collected wind data, vessel position and heading. The Miros VTI service 

collected hindcast water temperature data from the EU Copernicus database. Water salinity was not 

used in the analysis. Finally, water depth data was also collected from the EU Copernicus service to 

filter out shallow water situations.  

 

3.1.  Propeller cleaning 1 

 

In the first scenario, an LNG carrier (length 295 m and width 46 m) was on a voyage from Tianjin, 

China to Qalhat, Oman as shown in Fig.2. A hull inspection and propeller cleaning were performed 

during a one-day stopover in Singapore. Some photos taken during the inspection together with a 

specification of the fouling identified are shown in Fig.3 and Fig.4. 

 

 
Fig.2: Vessel route from Tianjin, China to Qalhat, Oman with a one-day stopover in Singapore. The 

blue part of the voyage is before the cleaning and the red part is after the cleaning. 

 

Fig.3: Pictures and specification of the fouling for the port and starboard vertical sides.  

 

The VTI was calculated for the entire voyage as shown in Fig.5. From this depiction of the VTI time 

series it is difficult to conclude on the changes in VTI due to the propeller cleaning. The distribution of 
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VTI values was therefore compared together with a statistical analysis of the result. This is shown in 

Fig.6. As can be seen from the analysis, the VTI was reduced from 1.28 to 1.22 after the propeller 

cleaning. 

 

3.2. Propeller cleaning 2 

 

In the second scenario, an ultramax bulk carrier (length 200 m and width 32 m) was on a voyage from 

San Vincente, Chile to Buenaventura, Colombia as shown in Fig.7. A hull inspection and propeller 

cleaning were performed during a two-day stopover in Callao, Peru. Fig.8 shows pictures of the fouling 

on the vertical port side of the vessel. As in scenario 1, light hull fouling (slime) was observed. Fig.9 

shows pictures of the propeller before and after the polishing. The propeller was found to be moderately 

fouled (slime, barnacles, sea grass) before the polishing.Fig.3 

 

Fig.4: Pictures and specification of the fouling of the propeller before the polishing. 

 

 
Fig.5: The VTI calculated for the voyage from Tianjin, China to Qalhat, Oman. The missing values are 

normally due to weather conditions exceeding the allowed limits for the VTI analysis or because 

of relatively rapid changes in vessel operation or weather conditions. 

 

The VTI was calculated for the entire voyage as shown in Fig.11. As in scenario 1, the distribution of 

VTI values was compared together with a statistical analysis of the result. This is shown in Fig.12. The 

VTI was reduced from 1.20 to 1.08 after the propeller cleaning. 
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4. Discussion 

 

This paper investigated the technical performance of two large cargo vessels before and after propeller 

cleaning events by applying a VTI analysis methodology. Two hull cleaning events were analyzed. In 

both cases, the inspection revealed that the vessel only had light fouling on the hull. The propeller was 

also found to have light fouling in the first case whereas moderate fouling was identified in the second 

case. 

 

 

 

Fig.6: The VTI distribution before and after the propeller cleaning with the associated statistics shown 

on the right. The vertical axis shows the number of samples, i.e. the number of minutes with 

valid VTI calculations. 

 

 
Fig.7: Vessel route from Vincente, Chile to Buenaventura, Colombia with a two-day stopover in Callao, 

Peru. The blue part of the voyage is before the cleaning and the red part is after the cleaning. 

 

In the first scenario, the vessel VTI was reduced by 0.06 from a moderately high level of 1.28 prior to 

the cleaning procedure. In the second scenario, the VTI was reduced by 0.12 from 1.20 to 1.08. The 
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identified changes were relatively small but statistically significant even with the short time frames of 

data used in the analysis. The accuracy of the VTI analysis was approximately 0.03 in all scenarios. 

This shows that it is possible to accurately identify the effect of such cleaning procedures within a short 

time period of a few days. The analysis was performed using high-frequency, accurate data, and without 

accurate data, it is unlikely that such small changes in vessel performance could have been identified 

with sufficient accuracy without looking at much larger time frames. 

 

Fig.8: Pictures of the fouling on the port vertical side 

 

 
Fig.9: Pictures of the propeller before the propeller polishing 

 

Fig.10: Pictures of the propeller after the propeller polishing 

 

5. Conclusion 

 

The results presented in this paper show that the VTI concept can be used to quickly and accurately 

analyze the effect of propeller cleanings when used together with accurate data on STW, waves and 

wind. The VTI methodology can accurately normalize for the impact of weather, vessel operational 
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changes and navigation effects. It has been shown that a VTI analysis can identify relatively small 

performance gains by cleaning a lightly fouled propeller. In this case, the cleaning of a lightly fouled 

propeller led to a reduction in VTI of 0.06. This was accurately identified by analyzing just a very few 

days of data. The effect of cleaning a moderately fouled propeller was found to be significantly higher 

with a reduction in VTI of 0.12. The accuracy of the results were 0.02-0.03 VTI points, or 2-3%. 

 

The VTI is therefore a valuable tool for accurate vessel performance analysis that can provide a new 

level of accuracy in determining the effect of hull cleaning procedures, identifying the effect of energy 

saving devices and by identifying the actual performance level of a vessel at any time. 

 

 
Fig.11: The VTI calculated for the voyage from Vincente, Chile to Buenaventura, Colombia. The 

missing values are normally due to weather conditions exceeding the allowed limits for the VTI 

analysis or because of relatively rapid changes in vessel operation or weather conditions. 

 

 

 

Fig.12: The VTI distribution before and after the propeller cleaning with the associated statistics shown 

on the right. The vertical axis shows the number of samples, i.e. the number of minutes with 

valid VTI calculations. 
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Abstract 

 

This paper presents the results of utilizing advanced propulsion models to isolate and evaluate the 

performance of a vessel's hull and propeller individually. This is achieved by leveraging auto-log 

data, including thrust, torque and fuel measurements, alongside other real-life sensor data. Penalties 

caused by fouling and wear can thereby be attributed to either the hull or the propeller, supporting 

more informed operational decisions. To achieve this, a method proposed by Ballegoojen (2019) is 

used. This requires baselines for the thrust and torque of the vessel. This paper is investigating two 

different methods to create those baselines: the first is utilizing Vessel Performance Solutions’ in-

house ship performance Speed-Power models and the second is relying on propeller Open-Water 

curves and Model test data. The methods were tested on bulk carriers using real-life operational data. 

The models show that a separation can be achieved, further investigation is needed to improve the 

understanding of the correlation between the KPI’s. 

 

1. Introduction 

 

Today, vessel performance is an advanced technology essential to vessel operations. Operators are 

interested in reducing their operational costs and greenhouse gas emissions (GHE). In general, vessel 

performance can be understood as covering many different operation areas. This paper will focus on 

hull and propeller performance. Over time, the vessel develops fouling and corrosion. On top of this, 

cavitation can damage the propeller over time. This impacts the vessel’s resistance and the efficiency 

of the propulsion system. Cleaning the hull, using antifouling paints, or polishing the propeller can 

counteract this impact. These measures can be expensive, so knowing the benefits and comparing 

them can help to make an informed decision. 

 

The need to investigate the increased resistance due to degradation and fouling can be seen in an 

example case from Schultz (2007) based on an Oliver Hazard Perry-class frigate. The frigate had an 

increase in shaft power for a heavy calcareous fouled condition of 84% compared to the clean hull 

condition. Resulting in overconsumption and higher operational cost. 

 

New regulations from the International Maritime Organization (IMO) and local governments increase 

the pressure on companies to reduce their GHE. In 2023, IMO completed the first revision of its GHE 

strategy and increased its goal to reduce shipping GHE by 20% compared to 2008 in 2030 and finally to 

net zero in 2050. They estimate that 5%-15% can be saved by considering vessels hydrodynamic 

characteristics, which requires regular and timely cleanings of hull and propeller e.g. DNV (2023). 

 

Today, one way to measure the performance of your vessel is to compare the vessel’s consumption to 

a baseline and, by this, monitor the vessel’s performance. This approach gives valuable information 

about the vessel’s combined hull and propeller condition, but it does not provide any explicit 

information about the separate performance of the hull and propeller. Distinguishing between the 

increased resistance caused by hull and propeller gives the operators a better decision base. This helps to 

schedule respective hull cleanings and propeller polishes more efficiently. By this the overall 

consumption of a vessel can be optimized and operational cost and GHE can be reduced. 

 

When talking about hull and propeller resistance, we can gain a misunderstanding of the physical terms 

behind the words. Hull resistance is the resistance of a ship or floating body needed to be pulled through 

water. It follows the well-known formula:  

𝑅𝑇 =
1

2
𝜌𝐶𝑇𝑆 𝑉2 
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Where 𝑅𝑇 is the total resistance of the hull,  𝐶𝑇 is the total resistance coefficient, 𝑆 is the wetted surface 

area and 𝑉 is the velocity. 𝐶𝑇 in this case depends on the hull shape, speed, draft and surface condition 

of the hull. 

 

When talking about the propeller the focus is not that much on the resistance but the change of 

efficiency of the propeller. In terms of performance, the efficiency change can be presented as a 

resistance, as it is increasing the total fuel consumption of the vessel. 

 

2. Ballegooijen approach to separate Hull and Propeller Performance 

 

Ballegooijen (2019) suggests a method to separate hull and propeller performance using the thrust and 

torque sensors of a vessel and comparing them with a baseline for each sensor. The concept is based 

on the idea that fouling and surface degradation have different impacts on the thrust and torque of the 

propeller. 

 

Hull fouling increases the total resistance of the hull. Thereby both the thrust measured and the torque 

measured should increase similarly when the hull becomes fouled. On the other side, propeller fouling 

only impacts the efficiency of the propeller. The same thrust is needed to propel the ship, but more 

torque is needed to convert the engine power to the equivalent thrust. Thereby the changes in torque 

represents both the propeller and hull condition. The changes of the thrust represent the changes in the 

hull resistance. To split those from each other, 3 key performance indicators (KPI) are proposed. The 

first uses torque measurements to give a view over the combined condition of hull and propeller. The 

second uses the thrust to show the condition of the hull. The third is the difference of both to indicate 

the propeller condition. 

 

The following changes can be detected disregarding the weather impact. 

 

Thrust sensor: 

 

• Thrust deduction 

• Hull resistance 

 

Torque sensor: 

 

• Thrust deduction 

• Hull resistance 

• Wake fraction 

• Propeller efficiency 

 

To be able to compare the torque with the thrust it is needed to convert them into power.   
 

The torque can be converted by applying the power equation for a shaft: 

 
𝑃𝐷 = 2𝜋𝑛𝑀  

 

𝑃𝐷 is the delivered power, 𝑛 is the number of rotations per second and 𝑀 is the torque.  

 

The thrust would be normally converted using the following formula: 

 

𝑃𝑇 = 𝑇 ⋅ 𝑉𝐴 
 

Here 𝑃𝑇 is the thrust power and 𝑉𝐴 is the wake speed around the propeller. The disadvantage of this 

formula is that it is difficult to determine the wake speed in an operating vessel, therefore 

Ballegooijen (2019) suggest to use either the speed through water  instead, as this is measurable using 
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a log sensor, or correcting the speed overground for currents. This gives a new parameter, hull power, 

here 𝑉 is for the speed in m/s: 

 
𝑃𝐻 = 𝑇𝑉.  

 

Thereby KPIs for the thrust and for the torque can be defined as follows: 

 

KPITotal = KPI𝑇 = (
𝑃_𝐷

 Baseline Delivered Power 
− 1) ⋅ 100%) 

 

KPIHull = KPI𝑇 = (
𝑃𝐻 

 Baseline Hull Power 
− 1) ⋅ 100%) 

 
Assuming 𝐾𝑃𝐼𝑇𝑜𝑡𝑎𝑙 measures the total change in the propulsion efficiency and 𝐾𝑃𝐼𝐻𝑢𝑙𝑙 measures the 

change of hull resistance and thrust deduction, the difference of both KPI’s shows the changes in the 

wake fraction and the propeller efficiency. This gives the last KPI for the propeller performance: 

 

𝐾𝑃𝐼𝑃𝑟𝑜𝑝. = 𝐾𝑃𝐼𝑇𝑜𝑡𝑎𝑙 − 𝐾𝑃𝐼𝐻𝑢𝑙𝑙 

 

3. Verify KPI’s with simulation results 

 

To validate the proposed concept, the KPI will be calculated for results of a computational fluid 

dynamics (CFD) simulation of a container vessel. Those simulations were conducted by Song et al. 

(2020). Full-scale simulations of a KRISO reference container vessel with different “hull”, 

“propeller” and “hull and propeller combined” surface roughness was conducted. The CFD results 

contain the propeller thrust and torque coefficient and wake and thrust deduction for the different 

roughness. This enables using those results to calculate the KPIs and see the impact of the different 

roughness on them. As baselines for the hull power 𝑃𝐻 and delivered power 𝑃𝐷, the clean hull 

condition is used. Fig.1a shows the KPIs calculated for hull with different surface roughness applied 

and Fig.1b shows the KPIs for the propeller with different surface roughness. 

 

 
Fig.1: CFD results for different hull and propeller roughnesses, converted to KPI 

 

The results show that when only the propeller surface is changed, the KPI of the hull is not impacted, 

only the propeller and total KPIs are increasing. When the hull roughness is increasing, it is impacting 

both the total KPI, hull KPI and in a smaller degree the propeller KPI. 

 

Fig.2a shows the KPIs when both hull and propeller surface roughness increase. All three KPIs are 

increasing as expected. Fig.2b shows a comparison of the KPIs for summed separated, meaning 
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𝐾𝑃𝐼𝑖,𝑅𝑜𝑢𝑔ℎ ℎ𝑢𝑙𝑙 + 𝐾𝑃𝐼𝑖,𝑅𝑜𝑢𝑔ℎ 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 and for the combined 𝐾𝑃𝐼𝑖,𝑅𝑜𝑢𝑔ℎ ℎ𝑢𝑙𝑙 𝑎𝑛𝑑 𝑟𝑜𝑢𝑔ℎ 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟. The 

combined simulation has higher propeller and total KPIs compared to the sum of the separated 

simulated roughnesses. This shows that there is an interaction between the hull KPI and propeller 

KPI. 

 
Fig.2: Simulated KPIs for hull and propeller for different surface roughnesses. In b) separate is: 

𝐾𝑃𝐼𝑖,𝑅𝑜𝑢𝑔ℎ ℎ𝑢𝑙𝑙 + 𝐾𝑃𝐼𝑖,𝑅𝑜𝑢𝑔ℎ 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 and combined is: 𝐾𝑃𝐼𝑖,𝑅𝑜𝑢𝑔ℎ ℎ𝑢𝑙𝑙 𝑎𝑛𝑑 𝑟𝑜𝑢𝑔ℎ 𝑝𝑟𝑜𝑝𝑒𝑙𝑙𝑒𝑟 

 

The reason for effects on the propeller KPI, when only the hull roughness is changed, comes from the 

impact the surface roughness has on the wake. Increased surface roughness decreases the wake speed 

and impacts the propulsive efficiency 𝜂𝐷 negatively. The latter consists of the hull efficiency et 𝑎𝐻 =
(1 − 𝑡)/(1 − 𝑤), open water efficiency 𝜂𝑂, and rotative efficiency, all of which depend on the wake 

fraction. The propeller KPI does not directly measure the propeller's increased resistance. Instead, it 

measures the change in propulsive efficiency. 

 

4. Baselines 

 

The last section shows that those KPIs can be used to separate the hull and propeller impact and that 

both are linked with each other through the wake fraction. Even though valuable knowledge of the 

performance can be gained from those KPIs, to improve decision making of operators. 

 

Total and hull KPI are all based on a baseline. Ballegooijen (2019) employs the operational data right 

after a propeller and hull cleaning event to construct the required baselines. This is obtained by a 

simple curve fitting over the measured data as follows: 

 

𝑃 = 𝑎𝑉𝑏  

 

Here 𝑃 is the power, 𝑉 is the vessel's speed, and 𝑎 and 𝑏 are the fitting coefficients. Two baselines for 

the delivered power and thrust can be created accordingly. 

 

The issue with the baselines using this method is that they are obtained by adjusting and fitting the 

data to get the expected outcome. However, we believe that the baselines should be built in 

accordance with the underlying physical models. Therefore, in this project, we use different methods 

to construct the baselines. In the following sections, these methods are explained. 

 

4.1.  Vesper Baseline 

 

The first baseline will be created from a Vesper model. The Vesper software was developed by VPS 

for vessel performance. Each vessel class gets a model, which includes a digital twin with a speed-

draft-power model. This model is calibrated to the ship’s sea trial and thereby to its newbuild 
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condition. A speed-power model can be seen in Fig.3. The model predicts the delivered power for the 

vessel's full range of operational speeds and drafts. As the Vesper model covers the delivered power, 

it can directly be used as the delivered power 𝑃𝐷 baseline. To adjust it for the hull power, the relation 

between hull power and delivered power needs to be known. To achieve this, their relation to the 

effective power 𝑃𝐸 is found. 

 

 
Fig.3: A Vesper speed-power model for different drafts 

 

For the hull power we get: 

𝑃𝐸 = 𝑃𝐻(1 − 𝑡) 

𝑃𝐸 = 𝑇𝑉(1 − 𝑡)  

 

𝑡 is the thrust deduction, presenting the thrust lost coursed by the shape of the hull. To go from 

delivered power to effective power we get: 

 
𝑃𝐸 = 𝑃𝐷𝜂𝐷  

 

Combine this to get the relation between delivered power and Hull Power: 

 
𝑃𝐻(1 − 𝑡) = 𝑃𝐷𝜂𝐷

𝑃𝐻 =
𝑃𝐷𝜂𝐷

(1 − 𝑡)

 

 

 
Fig.4: Vesper Baselines for one vessel in ballast and laden condition 
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A normal range for 𝜂𝐷 is from 55% to 75%, USNA (2020). Based on the existing model test it was 

decided to set the 𝜂𝐷 to 0.7. It is important to mention that the 𝜂𝐷 depends on the draft and speed, but 

it is assumed to be constant to simplify the model. The thrust deduction coefficients are taken from 

model test. For vessels without a model test, the thrust deduction is calculated using the BSRA 

method e.g. Pattulo et al. (1971), see appendix. The baselines for one of the vessels for laden and 

ballast can be seen in Fig.4. The hull power is slightly below the delivered power. Fig.5 shows a 

flowchart describing the process. 

 

 
Fig.5: Flowchart showing the creation of the Vesper baseline 

 

5. Open water baseline 

 

The second baseline is obtained based on the propeller characteristics. Those are achieved from open-

water tests and model tests. Here, the thrust and torque coefficients of the vessel with the 

corresponding rotative efficiency are used to calculate the expected delivered power and hull power. 

As the thrust identity is used for the model test, the torque coefficient is adjusted with the rotative 

efficiency 𝜂𝑅. 

𝑃𝐻 = K𝑇(𝐽)𝜌𝑛𝐿
2𝐷4𝑉  

 

𝑃𝐷 =
K𝑄(𝐽)𝜌𝑛𝐿

2𝐷5

𝜂𝑅(𝑉)
2𝜋𝑛𝐿  

 

𝐾𝑇 =
𝑇

𝜌𝑛2𝐷4 and 𝐾𝑄 =
𝑄

𝜌𝑛2𝐷5 are the propellers Thrust and Torque coefficients, 𝐽 =
𝑉𝐴

𝑛𝐷
 is the 

advancements ratio, 𝜌 is the water density, 𝑛𝐿 is the light running rotational speed of the engine. D is 

the propeller diameter and 𝜂𝑅 is the rotative efficiency.  

 

Here 𝐾𝑇 and 𝐾𝑄 are functions of 𝐽. 𝜂𝑅 is a function of the velocity. 𝑛𝐿 represents the light running 

rotations per second, it is calculated based on Vesper Speed Power model, as no relation is given in 

the available Sea Trials. It can be calculated by using the following formula: 

 

𝑛𝐿 =
RPMheavy (MEload ) ⋅ LRM

60
(32) 

 

Here, RPMheavy (MEload ) is the rotational speed of the engine at the current engine power. The heavy 

RPM curve can be calculated by: 

RPMheavy (𝑃) =

[
 
 
 𝑃

MCR
RPMheavy (MCR)3 ]

 
 
 

1
3
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The MCR is the maximum continuous rating of the vessel engine and 𝑅𝑃𝑀heavy (𝑀𝐶𝑅) is the 

corresponding RPM. Both can be found in the vessel's engine data. 

 

 
Fig.6: Flowchart of the open water baseline 

 

 
Fig.7: Baselines created by the propeller characteristics for vessel 3 

 

 
Fig.8: Open water and Vesper baselines for one of the investigated vessels. This results in the two 

baselines. An example for Vessel 3 can be seen in Fig.7. The flow chart for the open water 

baseline is shown in Fig.6. 
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The K𝑇(𝐽) and K𝑄(𝐽) are interpolated from the model test for the corresponding advance number 𝐽. 𝐽 

is calculated using the propeller dimensions the wake speed and the light running RPM. The wake 

speed 𝑉𝑎 is dependent on the wake fraction. The wake fraction can be interpolated from the model 

tests or empirically estimated using the BSRA method (see appendix) equation. For the models with 

model test, the model test data is used. For the vessels without the BSRA method is used. 

 

6. Calculating KPI from operational data 

 

In section 3 the KPIs are calculated based on the CFD results. CFD calculations have the advantage 

that we know the best condition of the hull and that the forces from weather, currents and other 

external forces can be controlled. During the operation those external forces need to be determined 

and the measurements need to be corrected for this. For this study this is done by Vesper. During this 

study High frequency auto log data is used. To simplify the calculations, the stable periods of the 

main sensors are detected and the average for those are calculated. Then those values are taken to 

calculated the measured delivered power 𝑃𝐷 and hull power 𝑃𝐻. Both are corrected for the weather 

and compared to the baseline to calculate their KPI. 

 

Fig.9 shows the flow diagram of this process until the calculation of the KPI.  

  

 

 
Fig.9: KPI procedure 

 

7. Applying both baselines on operational data 

 

The two baselines were built for 9 bulk carriers and were applied for their auto-log data. Afterwards 

the KPI average before and after a propeller polish was investigated. It was chosen to focus on 

propeller polishes. This is done because those events have the main impact on the propeller KPI and 

total KPI. The hull KPI should stay stable before and after the events. 

 

During the investigation period 11 propeller polishes happened. The results of those events can be 

seen in Figure 10. The average was taken of the KPI for a period of 30 days before and 30 days after 

the propeller polish. The results were collected for both baselines. To ensure the quality of the torsion 

meter the shaft power is also calculated based on the fuel consumption.  

 

Fig.10 shows that the shaft power shows similar results, whether it is calculated from torsion meter or 

fuel meter. Looking at the open water baseline, the impact on the hull KPI is larger than the impact on 

the propeller KPI. This shows that the baseline is not able to show the difference between propeller 

and hull fouling. On the other side looking at the baseline created with the Vesper baselines, the 

impact from the propeller polish is bigger on the propeller KPI compared to the impact on hull KPI. 

The average and the median of the hull KPI are close to 0. This can be expected looking at the CFD 

example shown in Part 3. 
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Fig.10: Change of KPIs before and after propeller polish. KPI is based on either the Vesper baseline 

or the open water baseline. The shaft power is either calculated with fuel consumption or the 

torsion meter. “OW” refers to the open water baseline. “Vesper” refers to the Vesper 

Baseline. 

 

The open water baseline is showing unexpected changes of the KPIs over a propeller polish. It is 

showing a higher decrease of the hull KPI compared to the propeller KPI. This is against expectations. 

It is also surprising as we would expect model test and open water test to create a precise model. One 

of the reasons for this could be that the model tests do not always cover the full operational range of 

drafts and speeds. This can lead to errors in the interpolation of thrust and torque coefficients. Also, it 

is known that due to different Reynolds numbers and frictional forces the scaling of the wake fraction 

from model to real live scale can be challenging. Thereby a different wake can impact the baselines.  

 

8. Conclusion and next steps 

 

The KPIs proposed by Ballegooijen (2019) can separate the propeller and hull performance. However, 

an advanced baseline for the hull and total KPI is crucial to gain useful information. To improve the 

method, the correlation between the hull power and shaft power needs to be better understood, so that 

a new factor can describe the impact of the hull to the propeller. This can be done by developing a 

relation between the hull KPI and wake fraction, thereby gaining a better understanding on how the 

hull condition impacts the flow towards the propeller and its efficiency. Two baselines were proposed. 

The open water baseline seems to have scaling errors which are not considered, impacting the 

baselines. Better results are seen when taking the Vesper baseline and applying the thrust deduction to 

create the hull baseline. This method seems to have the advantage that the thrust deduction is more 

stable when scaling and is less impacted by the condition of the hull. 

 

To verify those results a bigger study with more events is needed. On top of this, the relation between 

the hull KPI and the change of wake fraction would be needed to gain a better understanding of how 

the condition of the hull impacts the propeller efficiency. 
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Appendix 

 

A.1 Wake fraction and thrust deduction 

 

The British Ship Research Association (BSRA) has adapted some empirical formulas found by 

Pattullo et al. (1971) to predict the wake fraction and thrust deduction. Because model tests are not 

always conducted for vessels or the data is not yet available, it is important to be able to predict the 

wake fraction or thrust deduction on an empirical basis. The empirical formula for the wake fraction 

of a single screw vessels, is defined as: 

 

𝑤𝑇 = −0.0458 + 0.3745𝐶𝐵
2 + 0.1590𝐷𝑊 − 0.8635𝐹𝑅 + 1.4773𝐹𝑅

2  

 

Where in 𝐷𝑤 is a wake fraction parameter: 

𝐷𝑊 =
𝐵

∇1/3
√

∇1/3

𝑑
 

 

The limit for this method is 𝐶𝐵 = [0.55,0.85], Fr = [0.12 − 0.36]: 𝐶𝐵 is the block coefficient, 𝐹𝑅 is 

the Froude number, 𝐵 the vessels beam, ∇ is the displacement volume and 𝑑 is the draft. 

 

As for the wake fraction, thrust deduction can be determined by self-propulsion test, CFD and 

empirical estimations. The empirical formula from the BSRA is shown below. BSRA has developed 

two models, the first one if the pitch and diameter of the propeller are known and the second if they 

are not known. 

 

𝑡 = −0.2064 + 0.3246𝐶𝐵
2 − 2.1504𝐶𝐵(LCB/𝐿𝐵𝑃) + 0.1705(𝐵/∇1/3) + 0.1504(P/D)

𝑡 = 0.5352 − 1.6837𝐶𝐵 + 1.4935𝐶𝐵
2 − 1.6625(LCB/𝐿𝐵𝑃) + 0.6688𝐷𝑡

 

 

where LCB is the longitudinal center of buoyancy forward of 0.5 L as a percentage of 𝐿, P/D is the 

pitch ratio of the propeller and 𝐿𝐵𝑃 is the length between perpendiculars. 

 

The LCB can be estimated by using the Harvald (1983) method: 

 

LCB = −44.17𝐹𝑛 + 9.37  
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Abstract 

 

In this study, Newcastle University’s recently commissioned self-propulsion equipment is used to 

conduct experiments in the towing tank to test measurement methods and data analysis techniques. The 

cost and time-effective test campaign acts as a learning tool to benchmark test sensors and analysis 

methods. Uncertainty levels will be determined by using ITTC’s guidelines for self-propulsion test 

uncertainty analysis. The results provide insight into the prediction accuracy achieved by Newcastle 

University’s new facility, for calm water conditions. 

 

1. Introduction 

 

The International Maritime Organization (IMO) updated its strategy for reducing ship-induced 

greenhouse gas (GHG) emissions on 7th July 2023. The new strategy aims to reach net-zero GHG 

emissions from international shipping by, or around, 2050, IMO (2023). To respond to IMO’s strategy 

sustainable propulsion systems (SPSs), energy-saving devices (ESD) and performance monitoring 

systems need to be implemented for both new and existing ships. A cost-effective approach for 

assessing the proposed solutions should start with testing scaled-down models, identifying the error 

sources and understanding the accuracy of the test results as this represents the initial estimate of ship 

performance and the associated GHG emissions. 

 

An uncertainty sources classification is provided by ISO 19030:2016 Part 1 where the general principles 

for the measurement of changes in hull and propeller performance are set out, BSI (2016). Investigated 

uncertainty sources for both full-scale ships and experimental tests are the sensors installed for 

measuring the variables of interest such as the Doppler speed log, Dalheim and Steen (2021) of which 

the manufacturer’s accuracy could become the baseline for the uncertainty analysis and the deployed 

data acquisition systems (DAQ), Sogihara et al. (2020). 

 

 
Fig.1: The Uncertainty Sources – An Overall View, BSI (2016) 
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Any full-scale example of power-speed performance shows uncertainty. Firstly, we need to identify the 

uncertainty sources for obtaining reliable calm water conditions power-speed performance. To assess 

the efficiency of ESD or any improvements in ship design to reduce GHG emissions, we need to 

normalise (bring the calm water conditions) the operational power-speed performance measurement. 

The uncertainty of the full-scale performance estimation or calculation depends on the procedures 

selected for normalizing the recorded data, BSI (2016). 

 

Based on the existing guidelines developed by various institutes and organisations including the 

American Institute of Aeronautics and Astronautics, American Society of Mechanical Engineers 

(AIAA/ASME) and Bureau International des Poids Mesures (BIPM), the International Towing Tank 

Conference (ITTC) developed several specific procedures and guidelines for the uncertainty analysis 

of model test data providing a robust baseline for uncertainty analysis of ship’s self-propulsion tests, 

ITTC (2017). 

 

Through the quantification of the sensitivity coefficients of the individual measured variables, the 

uncertainty analysis represents a valuable tool for the identification of the dominant sources of error 

and their influence on the overall prediction accuracy, Wu et al. (2015). 

 

The required certainty level of the baseline calm seas conditions, before the evolution to the real seas 

state of a ship, enables an informed decision to be made regarding the results obtained from the real 

seas model tests. This study aims to ascertain the accuracy of Newcastle University's new self-

propulsion unit and its facility. 

 

2. Uncertainty Analysis 

 

Experiments are typically designed to ascertain the value of a quantity of interest that cannot be directly 

measured, namely the measurand. Its value is computed based on a measurement equation, namely a 

data reduction equation, containing the values of elemental variables obtained directly from measure-

ments, ITTC (2016b). 

 

𝑌 = 𝑓(𝑋1, 𝑋2, … , 𝑋𝑁) (1) 

 

where 𝑌 represents the measurand, 𝑋1, 𝑋2, … , 𝑋𝑁 represent the N directly measured variables and the 

function 𝑓 is the physical law for determining the measurand value but also incorporates all quantities 

that contribute to the measurand’s uncertainty such as the correction factors for 𝑋1, 𝑋2, … , 𝑋𝑁 and 

relevant sources of variability. 

 

Measurements will always contain errors. How far a measurement could be from the true value of the 

measured variable will depend on the type of error accompanying the measurements. Hence, the 

estimation of the measurand depends on the estimation of the directly measured variables. 

 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑁) (2) 

 

where 𝑦 represents the estimate of the measurand and 𝑥1, 𝑥2, … , 𝑥𝑁 represent the estimates associated 

with the N directly measured variables 𝑋1, 𝑋2, … , 𝑋𝑁. 

 

The estimates of the directly measured variables will be derived from the systematic errors arising from 

different sources such as the instrument's precision and calibration and the data acquisition system, and 

the random errors that are triggered by the uncontrolled elements such as the unsteadiness of the 

phenomenon being observed, slight fluctuations in the measuring instruments and environment or the 

operator precision. In the case of systematic errors, namely bias limits, the results could be consistent 

in a particular direction, low or high. Random errors are described as precision limits, and according to 

the ITTC guidelines for propulsion tests, ITTC (2017). they will be completely aleatory, not exhibiting 

any obvious trend and as the number of samples increases, they will have a normal Gaussian 

distribution. The true value of the directly measured variable will remain unknown; however, 
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uncertainty analysis aims to provide a reasonable estimate of their bias, B, and precision limits, P, for 

constructing an uncertainty interval where the true value of the measured variable could be expected to 

lie with a certain level of confidence. For experimental hydrodynamics, the ITTC guidelines 

recommend a 95% level of confidence, ITTC (2016a). 

 

Finally, the total uncertainty of the measurand is computed based on the analysis and quantification of 

the measured variables’ total uncertainty interval. 

 

𝑢(𝑦) = 𝑔(𝑢(𝑥1), 𝑢(𝑥2), … , 𝑢(𝑥𝑖), … , 𝑢(𝑥𝑁)) (3) 

 

where g represents the generalised form of the law of propagation of uncertainty, 𝑢(𝑦) is the uncertainty 

of the measurand and 𝑢(𝑥1), 𝑢(𝑥2), … , 𝑢(𝑥𝑁) are the uncertainties associated with the N directly 

measured variables 𝑋1, 𝑋2, … , 𝑋𝑁. 

 

2.1. Standard Uncertainty 

 

There are two methods for obtaining the standard uncertainty of a measurement: Type A and Type B, 

ITTC (2016b). Both are based on a probability distribution, with the uncertainty quantified by the 

standard deviation. The Type A method uses the statistical analysis of a series of observations to obtain 

the components of uncertainty, while the Type B method uses the instrument manufacturer's 

information, prior experience, or professional judgments. 

 

2.2. Combined Standard Uncertainty 

 

The combined standard uncertainty is determined by implementing the law of propagation of 

uncertainty with its general equation accounting for both correlated and uncorrelated input quantities. 

For this study, the input quantities are assumed to be fully uncorrelated, therefore the root sum square 

of the elementary bias limits will be used to ascertain the combined bias limit of the measured variables. 

The bias error sources recommended by the ITTC guideline for the self-propulsion test, ITTC (2017), 

are classified into three categories: calibration, data acquisition, and data reduction, where the latter is 

applicable only for the corrected values of input quantities and the measurand (the derived value from 

the measured quantities). Normally, the data acquisition category encompasses the biases associated 

with the curve fitting and signal conversion from analogue to digital. ITTC recommends a simplified 

calibration by performing it as an end-to-end process, meaning the wiring, connectors, routing and the 

data acquisition system are all part of the calibration process. As a result, the bias limit associated with 

the signal conversion from analogue to digital is accounted for within the bias limit associated with the 

curve fitting. 

 

The total bias of a directly measured variable, for independent bias error sources, is obtained using the 

root of the sum of the squares (RSS) arising from each individual source: 

 

𝐵(𝑥𝑖) = √𝐵𝑠𝑡𝑑
2 (𝑥𝑖) + 𝐵𝑐𝑓

2 (𝑥𝑖) + 𝐵𝐴𝐷𝐶
2 (𝑥𝑖) (4) 

 

where Bstd represents the bias error introduced by the weights used for the calibration, Bcf is the bias 

error introduced by the curve fit and BADC is the bias error associated with the analogue-to-digital 

conversion.  

 

Each directly measured input variable will have a different impact on the variable of interest, the 

measurand. Their different impacts on the measurand uncertainty are quantified as sensitivity 

coefficients calculated from the partial derivative of the measurand with respect to the relevant input 

variable, as seen in Eq.(5). 

 

𝑐𝑖=
𝜕𝑦

𝜕𝑥𝑖
 (5) 
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where y is the estimate of the measurand and 𝑐𝑖 represents the sensitivity coefficient of the input variable 

𝑥𝑖. 

 

The combined bias limit of the measurand, for fully uncorrelated input variables is calculated as: 

 

𝐵(𝑦) = √∑ 𝑐𝑖
2

𝑁

𝑖=1
𝐵2(𝑥𝑖) (6) 

 

where B(y) is the measurand combined bias limit, 𝑐𝑖 is the sensitivity coefficient of the estimated input 

variable 𝑥𝑖 and 𝐵(𝑥𝑖) represents the combined bias of the estimated input variable 𝑥𝑖. 

 

In the case of precision limits, which are calculated using repeat tests, the estimate of a measured 

variable is obtained by calculating the average, 𝜇, of ‘n’ measurements under the same conditions of 

repeatability: 

 

𝜇 =
1

𝑛
∑ 𝑥𝑘

𝑛

𝑘=1
 (7) 

 

where 𝑥𝑘 is the 𝑘  value of the measured variable 𝑥. 

 

The standard deviation, 𝜎, characterise the dispersion of the measured variables around the mean and 

is calculated based on Eq.(8). 

 

𝜎 = √
1

𝑛 − 1
∑ (𝑥𝑘 − 𝜇)2

𝑛

𝑘=1
 (8) 

 

When the curve fitting bias limit is required to be determined with a 95% confidence level, the standard 

error of estimate (SEE) is calculated: 

 

𝑆𝐸𝐸 = √
1

𝑛 − 2
∑ (𝑌𝑘 − (𝑎𝑋𝑘 + 𝑏))2

𝑛

𝑘=1
 (9) 

 

where 𝑌𝑘 represents the measured values and (𝑎𝑋𝑘 + 𝑏) are the obtained values from the regression 

equation. 

 

A ±2(SEE) interval about the regression curve will contain approximately 95% of the data points and 

represent the confidence interval on the curve fit. 

 

For a single test, the precision limit of a measured variable can be estimated as the product between the 

standard deviation σ, derived from multiple tests, and the coverage factor, k, corresponding to a 95% 

confidence level. ITTC recommends 15 measurements for the repeat tests to achieve a coverage factor 

of two, ITTC (2017). 

 

𝑃(𝑆) = 𝑘𝜎 (10) 

 

where 𝑃(𝑆) is the single-test precision limit of a measured variable and the coverage factor, k represents 

the inverse student t-test for a degree of freedom equal to 𝑛 − 1. 

 

For a measured variable, the precision limit for multiple tests, P(M), is obtained according to: 
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𝑃(𝑀) =
𝑘𝜎

√𝑀
 (11) 

 

where M represents the number of tests for which the precision limit is to be established. 

 

The estimation of the measurand’s precision limit, for single or multiple tests and fully uncorrelated 

input variables, is calculated based on Forgach’s (2002) recommendation: 

 

𝑃(𝑦) = √∑ 𝑐𝑖
2

𝑁

𝑖=1
𝑃2(𝑥𝑖) (12) 

 

The total uncertainty associated with the measurand, is given by the root sum square of the uncertainties 

in the total bias and precision limits: 

 

𝑈(𝑦) = √𝐵(𝑦)2 + 𝑃(𝑦)2 (13) 

  
2.3. Data Reduction Equation 

 

A self-propulsion test is primarily conducted to determine the powering requirements of a ship in the 

presence of a propeller with the thrust deduction factor, 𝑡, the wake fraction, 𝑤, and relative rotative 

efficiency, ηR as important propulsion parameters that help designers and researchers to assess in more 

detail the performance of a ship, Bertram (2004). 

 

The analysis conducted within this paper aims to estimate the uncertainty associated with the calculation 

of the thrust deduction factor, 𝑡, as its values are independent of the Froude number, and it will not be 

changed by the extrapolation process to the full-scale, therefore its accuracy estimation at the model 

scale provides a good insight for estimating the hull efficiency in the presence of a propeller. 

 

𝜂𝐻 =
1 − 𝑡

1 − 𝑤
 (14) 

 

where 𝜂𝐻 represents the hull efficiency and 𝑤 is the wake factor. A smaller thrust deduction factor than 

the wake factor will yield a hull efficiency greater than unity which will require less power from the 

propeller resulting in fewer emissions if the prime mover is an internal combustion engine using fossil 

fuel. Hence, the accurate quantification of the thrust deduction factor is an important stage in the process 

of emission reduction estimation resulting from the ship design optimisation or implementation of 

sustainable technologies. 

 

The recommendations of the ITTC (2017) guideline for the self-propulsion test were followed to 

quantify the total uncertainty related to the thrust deduction factor. 

 

The self-propulsion unit was purchased to support Newcastle University’s teaching activities. This will 

ensure that future generations of naval architects and marine engineers have the necessary skills and 

understanding of a ship performance assessment and the importance of integrating uncertainty analysis 

into the analysis of experimental tests and full-scale ship operations. The thrust deduction factor data 

reduction equation was selected for this analysis as it aligns with the existing resources and will ensure 

a robust baseline in developing an in-house procedure. The thrust deduction factor, 𝑡, is expressed as 

follows: 

 

𝑡 = 1 − (𝑅𝐶 − 𝐹𝐷)/𝑇 (15) 

 

where 𝑡, namely the measurand, is not measured directly but is determined from 𝑇, the measured thrust 

in the propulsion test, 𝐹𝐷 is the calculated external tow force and 𝑅𝐶 the resistance corrected for the 



 

261 

difference in temperature between the resistance and propulsion tests. Due to the towing tank location, 

the water temperature did not differ substantially between the resistance and propulsion tests, hence the 

difference in total resistance was considered negligible.  

 

The total uncertainty of the thrust deduction factor will arise from the bias and precision limits of the 

𝑇, 𝐹𝐷 and 𝑅𝐶 estimations. It is assumed that 𝑇, 𝐹𝐷 and 𝑅𝐶 are fully uncorrelated. 

 

The bias limit of the thrust deduction factor is obtained by applying the law of propagation for 

uncertainty: 

 

𝐵(𝑡) = √(
𝜕𝑡

𝜕𝑅𝐶
𝐵(𝑅𝐶))2 + (

𝜕𝑡

𝜕𝐹𝐷
𝐵(𝐹𝐷))2 + (

𝜕𝑡

𝜕𝑇
𝐵(𝑇))2 (16) 

 

where the sensitivity coefficients for the resistance, the external towing force and thrust are calculated 

as: 

 
𝜕𝑡

𝜕𝑅𝐶
= −1/𝑇 (17) 

 
𝜕𝑡

𝜕𝐹𝐷
= 1/𝑇 (18) 

 
𝜕𝑡

𝜕𝑇
= (𝐹𝐷 − 𝑅𝐶)(−1/𝑇2) (19) 

 

Similarly, the precision limit of the thrust deduction factor is calculated using the sensitivity coefficients 

and the precision limits of the 𝑇, 𝐹𝐷 and 𝑅𝐶 estimations: 

 

𝑃(𝑡) = √(
𝜕𝑡

𝜕𝑅𝐶
𝑃(𝑅𝐶))2 + (

𝜕𝑡

𝜕𝐹𝐷
𝑃(𝐹𝐷))2 + (

𝜕𝑡

𝜕𝑇
𝑃(𝑇))2 (20) 

 

This leads to the total uncertainty of the thrust deduction factor, being: 

 

𝑈(𝑡) = √𝐵2(𝑡) + 𝑃2(𝑡) (21) 

  
3. Case Study 

 

This uncertainty analysis aims to estimate the total uncertainty associated with the measurements of the 

model speed and the input variables required to calculate the thrust deduction factor. The results will 

be compared with the speed benchmark provided by the standard BS ISO 15016, BSI (2015), and ITTC 

guidelines for assessing the speed and power performance during sea trials, ITTC (2024). 

 

The self-propulsion test was performed at the Newcastle University Hydrolab and followed the so-

called “British Method” which consists of applying an external force to the model, 𝐹𝐷, to compensate 

for the difference in skin friction coefficients between the model and the full-scale ship. At the same 

time, it will ensure that the correct propeller loads are achieved during the self-propulsion test, Bertram 

(2004). However, in our study, the estimated skin friction correction force was used only as a numerical 

aid for the graphical estimation of the ship's self-propulsion point not for achieving the model’s self-

propelled equilibrium. 
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3.1. The Newcastle University Towing Tank 

 

The self-propulsion test was conducted in Newcastle University’s towing tank, shown in Fig.2, a 

teaching facility primarily designed for conducting resistance tests. The towing tank capabilities 

together with the conditions of the repeated tests for the self-propulsion experiment in calm water 

conditions are presented in Table I. 

 

Table I: Specification of Newcastle University Towing Tank and Conditions of the Repeat Test 

Descriptions Units Values 

Length x Width (m) 37 x 3.7 

Water Depth (m) 1.25 

Maximum Carriage Velocity (m/s) 3.0 

Capacity of Load Cell (N) 50 

Gifford Load Cell Precision (N) ±2.5 

R31 Dynamometer Rated Thrust (N) ±100 

R31 Dynamometer Thrust Non-linearity (%F.S.) 0.15 

R31 Dynamometer Rated Torque (Nm) ±4 

R31 Dynamometer Torque Non-linearity (%F.S.) 0.15 

Water Temperature (deg. C) 14.5 

Thermometer resolution (deg. C) 0.4 

Number of Repeat Tests (-) 15 

Samples Interval for Each Test (s) 0.00062 

Total Number of Samples for Each Test (-) 28655 

   

 
Fig.2: The Newcastle University’s Towing Tank 

 

During the tests, the measurement instruments are powered by a set of Y24-12 YUASA valve-regulated 

lead acid batteries installed on the carriage unit. 

 

A bare hull resistance test was conducted to obtain the model form factor and the total resistance curve 

corresponding to the model speeds. 

 

3.2. The Self-Propulsion Unit 

 

The self-propulsion unit, consisting of an electrical motor, flexible shaft and dynamometer, was 

commissioned from HR Wallingford together with a standard 1.5 m long glass-reinforced plastic (GRP) 

educational model, which is a generic representation of an offshore support/trawler ship with an 

approximate overall length of 30 m. This ensures the availability of a wide range of engine types for 

the full-scale ship. The ship's main particulars are indicated in Table II. 
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Table II: Ship Main Particulars 

Main Particulars Unit Full Scale Model Scale 

Scale Factor (-) 20 

Length Overall (m) 30.00 1.500 

Breadth Moulded (m) 6.80 0.340 

Depth Moulded (m) 6.92 0.346 

Draft (m) 3.20 0.160 

Length Waterline (m) 28.74 1.437 

Volume of Displacement (m3) 392.00 0.049 

Wetted Surface Area (m2) 304.80 0.762 

Estimated Design Speed (knots)/(m/s) 7.00 0.800 

    

 
Fig.3: Model and Self-Propulsion Unit Portside 

View 

 
Fig.4: Model and Self-Propulsion Unit Aft View 

 

 
Fig.5: Experimental Set-Up for the Self-Propulsion Test 

 

As a testing apparatus, this self-propulsion model ship will be used for teaching and research at 

Newcastle University.  

 

For the self-propulsion test, the model was fitted with a stern tube, propeller shaft, mounting brackets 

for the R31-01 type self-propulsion dynamometer, and a towing point for its connection to the towing 

platform. The model was set up for the resistance test with the motor installed on the carriage and the 

dynamometer installed on the model. The propeller rotational speed is transmitted from the motor to 

the dynamometer through a flexible shaft as illustrated in Figs.3 and 4. The tests were conducted using 

a three-blade brass model propeller of 75 mm diameter. It was estimated, from the propeller model 

expanded area ratio, the pitch ratio and measuring its rake angle, as being a Wageningen B series, B3.50. 

The propeller and dynamometer were not fitted on the ship model for the resistance tests. An equipment 

list is given in Table III and the diagrammatic representation is in Fig.5. 
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Table III: The Equipment List Used for the Self-Propulsion Test 

ID Equipment Description 

1 Electrical Motor 

2 Flexible Shaft 

3 R31-01 Dynamometer 

4 Electrical Motor Switch 

5 Y24-12 YUASA Battery 

6 Gifford Load Cell 

7 Data Acquisition Unit 

8 Laptop with LabVIEW software 

 

4. Preliminary Results and Discussions 

 

4.1. The Model Speed Total Uncertainty  

 

The total uncertainty associated with the measurements of the model speed was calculated through the 

law of propagation of uncertainty using the bias of the model speed linear regression of the carriage 

motor rotational speed and the precision limit calculated based on the multiple test runs conducted 

during the propulsion test. This is presented in Table IV. 

 

The relationship between the mean model speeds achieved during two complete resistance tests and 

carriage motor rotational speed is shown in Fig.6. The value of the bias limit associated with the linear 

regression, with a 95% confidence level, is represented by a band about the curve fit with a range of 

±2SEE. The relationship between the desired model speeds and carriage motor rotational speed, based 

on the existing table, is illustrated in Fig.7. 

 

 
Fig.6: Model Speed - Experimental Linear Regression 

 

 
Fig.7: Model Speed – Facility’s Linear Regression 
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The bias and precision limit values obtained were used for the estimation of the model speed total 

uncertainty and their percentage contributions are illustrated in Table IV. 

 

Table IV: The Model Speed Uncertainty Analysis Outcomes 

Vs (m/s) 3.57 

Vm (m/s) 0.798 

BV (m/s) 0.012 

BV (%) of UV(S) 95.96% 

BV (%) of UV(M) 99.72% 

PV (S)(m/s) 0.0025 

PV (S) (%) of UV(S) 4.04% 

PV (M) (m/s) 0.0006 

PV (M) (%) of UV(M) 0.28% 

UV (S)(m/s) 0.012 

UV (S) (%) of Vm (m/s) 1.55% 

UV (M) (m/s) 0.012 

UV (M) (%) of Vm (m/s) 1.52% 

UV (S)(kts) 0.107 

 

The results show that the total uncertainty is marginally greater than 1.5% when expressed relative to 

the mean model speed of 0.798 m/s. The bias limit from the curve fitting significantly contributes 

toward the total uncertainty for single and multiple runs. For the extrapolation to the full-scale ship, 

applying the Froude similarity and returning to absolute numbers, the obtained total uncertainty value 

is 0.107 knots which satisfies ISO’s requirements for ship speed predictions, BSI (2015). Automated 

means of selecting the carriage motor rotational speed and increasing the accuracy of the analogue to 

digital conversion may improve the accuracy of the ship speed predictions. 

 

4.2. The Thrust Deduction Factor Total Uncertainty  

 

For obtaining the total uncertainty associated with the thrust deduction factor we first estimate the bias 

and precision limits for the input variables: thrust T, applied towing force FD and the corrected resistance 

RC. The identification of the significant sources of uncertainties was conducted following the ITTC 

(2017) example for the propulsion test and the guide for experimental hydrodynamics, ITTC (2016b). 

As we conducted an end-to-end calibration for the Gifford load cell and the propulsion dynamometer, 

the bias limit due to the data acquisition is accounted for by the bias of the curve fit, hence only two 

sources of uncertainty were investigated: the bias arising from the tolerance of the calibration weights 

and the bias of the curve fit. 

 

Table V contains the baseline values of the accuracy for the input variables. They were calculated for 

Newcastle University’s instruments used in the self-propulsion test by following the ITTC (2021)  

recommendation for the instrument’s accuracy relative to their maximum capacity and the Newcastle 

University Hydrolab technician's expertise in obtaining a confidence interval for the measured values 

utilizing 10% of the instruments’ maximum capacity. 

 

Table V: The Baseline Values of the Accuracy for the Input Variables 

Source Resistance 

[N] 

Thrust 

[N] 

Torque 

[Nm] 

Model Speed 

[m/s] 

ITTC - 7.5-02-03-02.1 (ITTC, 2021) 0.1 0.2 0.008 - 

Newcastle University Hydrolab_min. 

values 

5 5 0.4 0.02 

Newcastle University Hydrolab_max. 

values 

45 45 3.6 3 

 

 



 

266 

4.3. The Input Variables Bias Limit  

 

Following the in-house procedure, the propulsion dynamometer and Gifford load cell were calibrated 

in the Newcastle University Hydrolab. The calibration intervals were selected based on the estimated 

values for the input variables during the resistance and the self-propulsion tests. Therefore, for the 

positive thrust, the available weights allowed a 3.51 N to 18.51 N calibration range in increments of      

5 N. In the case of positive torque calibration, we covered a range between 0 Nm and 1 Nm in increments 

of 0.5 Nm and for the resistance calibration, the full range of the Gifford load cell was investigated 

based on the existing curve fit in the data acquisition system. Figs.8 to 11 illustrate the standard 

uncertainty components for the positive thrust/torque calibration bias limits; the calibration weights 

accuracy, Bstd and the curve fitting, Bcf. 

 

 
Fig.8: Positive Thrust - Bias Limit from Curve Fitting, BcfT 

 

 
Fig.9: Positive Thrust - Bias Limit from Weights, BstdT 
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Fig.10: Positive Torque (clockwise rotation) - Bias Limit from Weights, BstdQ 

 

 
Fig.11: Positive Torque (clockwise rotation) - Bias Limit from Curve Fitting, BcfQ 

 

These bias limits are classified as Type A uncertainties as they were obtained based on the statistical 

analysis of at least three repeated sets for the dynamometer and Gifford load cell calibration, ITTC 

(2016b). For thrust calibration, a sample population of 81 data points was obtained and for torque 

calibration, the sample population was 18 data points. 

 

The total bias limits associated with resistance, thrust and torque calibration were calculated using the 

RSS of the bias limit from the weights and the curve fitting based on the law of propagation of 

uncertainty, see Eq.(4).  

 

From Table VI, we observe that the accuracy of the regression curve primarily influences the total thrust 

and torque bias limit. However, satisfactory results were obtained for the accuracy of the resistance and 

thrust bias limits corresponding to 0.798 m/s model speed. Improvements in the accuracy of the positive 

torque bias limit will be achieved if larger torque values are measured. 
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Table VI: The Results for the Resistance, Thrust and Torque Calibration Bias Limits 

Vs (m/s) 3.57 

Vm (m/s) 0.798 

Corrected Resistance, RC (N) 1.63 

Measured Thrust, T (N) 1.257 

Measured Torque, Q (Nm) 0.009 

Corrected Resistance, RC BstdRC (N) 0.0163 

BcfRC (N) 0.0079 

BRC (N) 0.0181 

% of the Measured Resistance 0.49% 

Thrust, T 

(positive) 

BstdT (N) 0.0126 

BcfT (N) 0.0078 

BT (N) 0.0148 

% of the Measured Thrust 1.18% 

Torque, Q 

(positive) 

BstdQ (Nm) 0.0001 

BcfQ (Nm) 0.1836 

BQ (Nm) 0.1836 

% of the Measured Torque 5% 

  

For the model’s mean speed of 0.798 m/s and based on the initial calibration outcomes, the lowest 

combined bias limit is estimated for the resistance as 0.018 N, with the largest being obtained for the 

torque as 0.18 Nm.  

 

These obtained bias limits, which are defined as Type A uncertainties, are greater than the ITTC (2021) 

recommendations and the dynamometer thrust full-scale non-linearity of 0.15% which can be associated 

with a Type B uncertainty, ITTC (2016b). ITTC states that “for high-quality instrumentation and in a 

well-controlled environment, the Type A uncertainties are usually smaller in comparison to the Type B 

uncertainties”, ITTC (2016b) which does not appear to be the case for the measured parameters 

corresponding to the model speed of approximately 0.8 m/s. Therefore, further analysis is required for 

higher model speeds. 

 

4.4. The Input Variables Precision Limit  

 

For the determination of the input variables' precision limits, the ITTC (2017) recommendations were 

followed, and five sets of testing (A-E), each containing three consecutive runs were conducted, with 

the model removed and reinstalled between each set of measurements. The standard deviation obtained 

from the mean of 15 runs, each representing 28655 data points of the measured parameters, represented 

the basis for estimating their precision limit. During each run, the model speed and shaft revolutions 

were constant and representative of the balance point of nominal loading for the specified model speed. 

The Gifford load cell measured an augmented resistance representing the difference between the 

model’s total resistance corresponding to the selected model speed and the thrust generated by the 

propeller. For the selected condition, the propeller-delivered thrust and torque were measured by the 

R31 dynamometer and the results were recorded using LabVIEW software. A summary of the processed 

data is presented in Table VII. 

 

Table VII: The Summary of the Input Variables Precision Limit 

Propeller Speed 

14.11 [rps] 

RC 

[N] 

Thrust 

[N] 

Torque 

[Nm] 

Model Speed 

[m/s] 

Mean 0.3774 1.2566 0.0091 0.7980 

Standard Deviation, σ 0.0362 0.0107 0.0004 0.0012 

P(S) 0.0724 0.0215 0.0007 0.0025 

P(S) (%) of Mean 19.17% 1.71% 8.16% 0.31% 

P(M) 0.0187 0.0055 0.0002 0.0006 

P(M) (%) of Mean 4.95% 0.44% 2.11% 0.08% 
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The calculated precision limit for a single run, P(S), and for multiple runs, P(M), are classified as Type 

A as they were also obtained based on the statistical analysis of multiple tests, ITTC (2016b). From 

Table VII we observe that the lower precision limit is achieved for the model speed and the higher 

precision limit is achieved for the augmented resistance which means that the Gifford load cell provides 

the lower measurement accuracy. The same precision limit is associated with the corrected resistance 

and towing force for determining the thrust coefficient factor. Hence, their accuracy could greatly 

influence the accuracy of the computed thrust coefficient factor. However, their impact on the total 

uncertainty of the thrust coefficient factor is also dependent on the percentage contribution of the thrust 

coefficient factor precision limit. 

 

The thrust precision limit is smaller than the torque precision limits indicating that the thrust 

measurements are more accurate and, comparing with the results obtained for the bias limits, one can 

affirm that thrust measurements are reliable while the torque measurements lie within the uncertainty 

band and the propeller needs to deliver a greater torque in order to obtain valid measurements.  

 

The law of propagation of uncertainty is applied for the estimation of the input parameters’ total 

uncertainty by computing the RSS of the bias and precision limits, as shown in Table VIII.  

 

Table VIII: The Summary of the Input Variables Total Uncertainties 

Propeller Speed 

 

14.11 [rps] 

RC 

 

[N] 

Thrust, T 

 

[N] 

FD 

 

[N] 

Torque, Q 

 

[Nm] 

Model 

Speed 

[m/s] 

Values 1.63 1.2566 0.575 0.0091 0.7980 

Bias Limit, B 0.0181 0.0294 0.0028 0.1836 0.0012 

B % of U(S) 5.91% 65.21% 0.15% 99.9984% 95.96% 

B % of U(M) 48.5% 96.56% 2.20% 99.9999% 99.72% 

P(S) 0.0724 0.0215 0.0724 0.0007 0.0025 

P(S) % of U(S) 94.09% 34.79% 99.85% 0.0016% 0.31% 

P(M) 0.0187 0.0055 0.0187 0.0002 0.0006 

P(M) % of U(M) 51.5% 3.44% 97.80 0.0001% 0.08% 

U(S) 0.0746 0.0364 0.0724 0.1836 0.0123 

U(M) 0.0260 0.0299 0.0189 0.1836 0.0121 

U(S) % of parameter’s value 4.58% 2.89% 12.59% 2014.71% 1.55% 

U(M) % of parameter’s value 1.60% 2.38% 3.29% 2014.70% 1.52% 

 

We can observe that for the model speed of 0.798 m/s, greater measurement accuracies were obtained 

for model speed, thrust and resistance. When multiple runs are conducted, significant improvements 

are observed in resistance and the towing force which in turn will improve the accuracy in the 

determination of the hull efficiency from the computation of the thrust deduction factor. 

 

However, as the obtained value for torque, during this self-propulsion run, is significantly smaller than 

the absolute value of its total uncertainty, these run measurements should be disregarded. An 

investigation was conducted to identify the possible sources of error such as the calibration settings and 

procedure, the regression equation, the equipment installation, the friction in bearings, the geometry/ 

size of the propeller and the accuracy of the open-water diagram. We selected a new propeller from the 

Wageningen series, B4.60, to conduct new tests as it was estimated to produce a torque value greater 

than 0.2 Nm for an average model speed of 0.798 m/s. 

 

Eq.(15) represents the basis for calculating the thrust deduction factor bias and precision limits. The 

contribution of the input parameters to the total uncertainty is quantified through their sensitivity 

coefficients obtained from Eqs.(17)-(19) with the total uncertainty of the thrust deduction factor 

estimation obtained by applying the law of propagation for uncertainty to the data reduction, see 

Eqs.(16), (20) and (21). The calculations were performed in Excel using Liu (2023) matrix example for 
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the open-water test uncertainty analysis. A summary of the outcomes, for the speeds of interest, is 

presented in Table IX. 

 

Table IX: Total Uncertainty for the Thrust Deduction Factor 

Vs (m/s) 3.57 

Vm (m/s) 0.798 

Thrust Deduction Factor, t 0.1604 

B(t) 0.0245 

B(t) (% of U(t)(S)) 8% 

B(t) (% of U(t)(M)) 57% 

P(t)(S) 0.0827 

P(t)(S) (% of U(t)(S)) 92% 

P(t)(M) 0.0213 

P(t)(M) (% of U(t)(M)) 43% 

U(t)(S) 0.0862 

U(t)(M) 0.0325 

U(t)(S) (% of t) 54% 

U(t)(M) (% of t) 20% 

 

For single runs, the total uncertainty represents 54% of the computed thrust deduction factor with the 

precision limit being the most significant source of uncertainty. Significant improvements in accuracy 

were achieved for multiple runs which represents a good strategy to be implemented as Forgach (2002) 

adopted for their self-propulsion experiments and uncertainty analysis. 

 

In the case of multiple runs, the total uncertainty level is reduced considerably but with the bias limit 

representing the most significant source of uncertainty with almost 60% contribution towards the total 

uncertainty. This bias limit is the combined result of the curve fitting from the instruments’ calibration. 

With the dynamometer’s manufacturer data indicating it as an accurate instrument, improvements in 

this direction should aim to balance the trade-offs between the in-house calibration rig and optimisation 

of procedures and the more expensive calibration fees required by a specialised laboratory. 

 

5. Conclusion 

 

This study presents the uncertainty analysis methodology associated with the self-propulsion tests 

conducted at the Newcastle University Hydrolab. It provided valuable insights into the importance of 

integrating uncertainty analysis at the experiment design stage and highlighted the influence of the 

calibration equipment and procedures on the test outcomes. In addition, it indicated that performing 

multiple runs could improve the overall accuracy of the results. 

 

The higher accuracy was obtained for the measurement of the model speed with its extrapolation to the 

full-scale ship satisfying the ISO requirements for ship speed predictions. 

 

The bias and precision limits analysis results were satisfactory for the resistance force and thrust 

parameters which are essential in the thrust deduction factor calculation. The outcomes indicated that 

accuracy will significantly improve when multiple runs are conducted and consequently, an accurate 

estimation of the hull efficiency and emission reductions could be obtained from the ship design 

optimisation. 

 

The uncertainty levels obtained for the input variables and the thrust deduction factor, based on ITTC’s 

guidelines for self-propulsion test uncertainty analysis, are specific to the Newcastle University facility, 

at the time of this paper's publication and further work is planned for increasing the accuracy of the 

results. Using the same propulsion unit configuration, the work will continue to determine the total 

uncertainty associated with the wake fraction and the relative rotative efficiency to ensure a 

comprehensive insight into the accuracy of the propulsion parameters required for the ship design 
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optimisation and its impact on greenhouse gas emission reduction. This will add transparency to the 

effectiveness of the proposed optimisation. 
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Abstract

 

Hull performance is analyzed with corrected fuel consumption. Or it is estimated by subjective picture 

analysis from ROVs.  A new sensor and software directly measure the hydraulic properties of paint 

and fouling during transit. By using big data and computer analysis it can answer questions like: Is 

premium paint worth the added cost in the real world? How do I optimize the cleaning operation? 

How frequent shall I groom? Shall we spot blast the hull in DD? 

 

1. Introduction 

 

Hull grooming is employed frequently as a proactive maintenance strategy to reduce hull resistance 

and maintain vessel efficiency. One promising approach is in-transit grooming, where the hull is 

cleaned while the vessel is underway. The primary motivations for this method include continuous 

cleaning without disrupting transport schedules, eliminating reliance on third-party suppliers and port 

authorities, and ensuring gentle interaction with the paint. 

 

Traditionally, hull efficiency has been estimated using indirect methods such as fuel efficiency 

analysis, video documentation of cleaning operations or inspections with remotely operated vehicles. 

However, these approaches often suffer from limitations, including low measurement accuracy, 

inconsistent data collection, insufficient sample sizes for robust statistical analysis, and high 

operational costs. In contrast, modern industrial processes routinely utilize high-precision 

measurements and large datasets to optimize performance. Given its significant impact on fuel 

consumption and environmental performance, hull roughness deserves similarly advanced 

measurement methodologies. 

 

Recent advancements in inspection and grooming technologies have introduced new possibilities to 

record high-resolution videos during grooming operations. A new system that measures hull 

roughness while simultaneously recording videos and performing grooming is now in its semi-

commercial stage. 

 

2. The use and analysis of In Transit hull cleaning 

 

In transit hull cleaning was introduced in 2020 for cleaning a hull while operating at ship speeds 

between 10 and 14knots. The aim is to always keep a clean hull rather than to wait for degrading hull 

performance. The tools are carried by the ship and operated by the crews. As it is operated offshore, it 

does not require port permits. A cleaning operation can be performed within hours but depending on 

ship size and fouling level. The system was first intended for slime, but further R&D has allowed 

removal of heavy fouling as well, including barnacles. This was exemplified in a study by DNV on 

two large container vessels that showed fuel savings of 5 and 16%, Hollenbach (2024). The system 

today is used on container, bulk and tank vessels from 128m to 400m length and with fouling release 

and self-polishing paints. 

 

A survey conducted at HullPIC 2019, Schmode et al. (2019), established that inadequate measurement 

and analysis was the biggest challenge in hull performance. The ITCH system has been independently 

proven with indirect analysis methods (traditional fuel efficiency derived analysis), but such analysis 

can be expensive. Gaining confidence in quality analysis can take years from the first cleaning till the 

analysis is ready. With FuelEU efficiency penalties being introduced, EU (2023), and others in the 

pipeline, the industry hardly have the time to wait.  
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Qualitative evaluation is done by watching fouling removal videos that is captured during cleaning 

operations. At daytime offshore, the water is clear and video quality good. The fouling plumes are 

immediately carried away and never obstruct the view. The video can be combined with areal 

coverage plots to get a good impression. The method is however not quantitative, and for hours of 

watching, some may find an old “Die hard” movie more entertaining. 

 

2.1. Why is roughness measurement important? 

 

Loss of fuel efficiency is a symptom of increasing hull roughness and is the current state of the art in 

hull efficiency monitoring. However, by measuring the roughness you get hard data, and you can 

action it by cleaning the hull.  Surface roughness is a part of fluid viscous flow equations. If you can’t 

determine the roughness, you cannot calculate the losses. In shipping we try to derive the roughness 

from fuel consumption. But weather, waves, current, wind, engine condition, air temperature, water 

temperature, propeller, trim and loading also play in. Most calculations assume that fouling and paint 

wear is equally distributed between boot top and bilge, but we know that is not true. The division into 

paint roughness and hydraulic roughness is also important because it separates effects that can be 

affected by hull cleaning and effects needing sand blasting of the hull. 

  

2.2. Why measure roughness in the water? 

 

Fouling has organic matter, but mainly consists of water and is “fluffy”. Once fouling gets in dry 

dock, most of the volume is lost and therefore the hull performance information of a roughness 

measurement is lost. 

 

2.3. Why measure fouling roughness In-Transit? 

 

Fouling, in particular fibrous fouling has very different volume when the ship is still vs in speed. In 

speed, it will flow along the hull side and that is what determines resistance in the water. If green 

grass fouling extends 50 mm from the hull when still, it may not extend more than 3 mm in transit or 

0.2 mm in dock. 

 

Biofouling documentation will be increasingly stringent with demands on frequent monitoring for 

port access. To maintain revenue generation, inspection during transit generates more profits than 

during standstill.  

 

2.4. Why do we need “big data”? 

 

Traditional roughness measurements are made on hulls with handheld sensors in dry dock. These 

measurements may be taken with 10s of max hundreds of measurements. Locations will be in 

accessible locations on the hull. Reliable roughness estimates require thousands or tens of thousands 

of measurements. The methodology involves measuring the surface before and after cleaning. 

Immediately repeating such a survey means that the “after” cleaning roughness measure an identical 

hull condition on the next survey. 

 

2.5. Why does it matter where the fouling is on a hull?  

 

Selection of paint is inaccurate science with cost impact for dock works and fuel consumption. 

Different hulls in the same trade may be painted with the same paints but experience different results. 

But this may be because of biological reasons, not the paint. One ship painted with different paints 

will undergo nearly the same biological conditions. Painting a ship with 4 different paints and locating 

and measuring the resulting roughness in different depths in a 1-month cycle is possible. One may 

also analyze where the roughness is. How far up on the bottom do you see fouling? This can even 

determine if different paints can be used in different parts of the hull. Hull roughness maps can be 

used as a part of the biofouling management documentation towards port authorities. This can 

automate the documentation for the crew. 
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2.6. Why can paint roughness be of value be for planning paint work? 

 

Some paint suppliers for fouling release coatings (FRC) claim fuel efficiency benefits with less paint 

roughness degradation than others. Others argue that these FRC paints are more fragile. Having 

roughness measurement on the hull can develop hard numbers on how this acts on my trade pattern. 

Can big data back it up? And can you quantify the benefits of a premium paint beyond a premium 

cost? By knowing the condition of the paint on before a dry dock, you get better basis for decision on 

whether blasting the hull or just a spot blasting the boot top. 

 

2.7 How is roughness measured? 

 

The ITCH-Performance robot measures hull roughness using optical methods. By applying image 

processing techniques, the ITCH-P robot can measure both hydrodynamic surface roughness and 

hard-surface roughness. This method provides high-resolution, non-contact measurements that are 

effective even in underwater environments. While the hard-surface roughness measurements have 

been tested and validated, the hydrodynamic surface roughness measurements require further 

verification and validation to ensure their accuracy and reliability. 

 

 
Fig.1: Schematic representation of hydrodynamic and hard-surface roughness. The hydrodynamic 

surface is influenced by biofouling such as slime, which alters the fluid flow profile, while 

the hard surface represents the inherent texture of the hull material. The ITCH-Performance 

robot measures both layers to provide comprehensive roughness data. 

 

3. Case studies 

 

3.1. Single Deployment Analysis 

 

In this section, we focus on a single deployment of the ITCH-Performance (ITCH-P) robot to evaluate 

the changes in hull roughness before and after a cleaning operation. On the starboard side of a 

Chemical Tanker with a length of 145 m, cleaning was conducted several times using another ITCH 

system prior to the deployment of ITCH-P. The ITCH-P robot was deployed after these cleaning 

operations to assess residual roughness. During this deployment, the ITCH-P recorded 78,739 data 

points. 

 

ITCH-P does not perform data processing while underwater. Instead, video files captured during 

deployments are processed post-operation using a designated application once ITCH-P is connected to 

a laptop. This post-processing enables users to obtain detailed roughness measurements. 

 

To evaluate the changes in hull roughness resulting from the cleaning operation, measurements from 

the ITCH-P deployment were analyzed. Each ITCH-P deployment included a bow-to-aft movement 

followed by an aft-to-bow movement. Roughness values recorded during the bow-to-aft movement 

represented the hull condition before cleaning, while values from the aft-to-bow movement reflected 
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the post-cleaning condition. Depth sensor readings and the frequencies of the winch spooling the rope 

connected to ITCH-P were employed to estimate the robot's position throughout both movements. 

However, the estimation of the horizontal position is yet insufficiently accurate to allocate repeatedly 

to the resolution of the graphics. Specifically, data such as the spooled rope length, rope tension, and 

their timestamps were lacking, which constrained the accuracy of the positional estimates. The 

estimated path of the ITCH-P robot is presented in Fig.2. 

 

 
Fig.2: Paths of the ITCH-Performance robot during the cleaning operations on the starboard side. 

The blue path represents the bow-to-aft movement, while the orange path indicates the aft-to-

bow movement during the deployment. Depth readings and winch speed were used to track 

the robot’s position. 

 

The processed roughness data were synchronized with depth sensor readings using timestamps. Figs.3 

and 4 illustrate the differences in hull roughness, before and after the cleaning operation, represented 

by Rt25, mapped to corresponding sections of the hull, each measuring 10 m in length and 1 m in 

depth.  

 

 
Fig.3: Difference in hydrodynamic roughness (Rt25) mapped to hull sections after the cleaning 

operation. The color gradient represents the reduction in roughness, indicating effective 

removal of transparent biofouling. 

 

 
Fig.4: Difference in hard-surface roughness (Rt25) mapped to hull sections after the cleaning 

operation. The random variations suggest minimal impact on hard-surface materials such as 

paint and metal. 

 

Fig.3 demonstrates improvements in hydrodynamic roughness, while Fig.4 highlights the variations in 

hard-surface roughness. These results suggest that the ITCH system effectively reduces hydrodynamic 
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roughness by removing transparent biofouling, such as slime, without significantly affecting hard-

surface materials, including paint, metal surfaces, and barnacles. Note that these figures may also bear 

inaccuracies due to limitations in estimating the horizontal position of the ITCH-P robot, as 

mentioned in the previous paragraph. 

 

Fig.5 provides a comparative analysis of average hydrodynamic and hard-surface roughness before 

and after the cleaning operation, illustrating the substantial reduction in hydrodynamic roughness 

achieved, while hard-surface roughness remains largely unchanged. 

 

 
Fig.5: Comparison of average hydrodynamic and hard-surface roughness before and after the 

cleaning operation. The stacked bar chart shows reduction in hydrodynamic roughness, while 

hard-surface roughness remains largely unchanged. The 0-point estimation for hydraulic 

roughness lacks accuracy. 

 

3.2. Transition of Hull Roughness Over Multiple Deployments 

 

This section examines the transition of hull roughness over multiple deployments of the ITCH-

Performance (ITCH-P) robot as a part of a test operation. Cleaning tests were conducted five times on 

the starboard side of a Capesize bulk carrier, with ITCH-P utilized in the first and fourth operations. 

During these deployments, ITCH-P made roughness measurements, with 130,600 and 113,552 data 

points processed for the first and fourth operations, respectively. 

 

ITCH-P does not perform data processing while underwater and files captured during deployments 

were processed post-operation using a designated application once ITCH-P was connected to a laptop. 

This post-processing enabled users to obtain detailed roughness measurements. 

 

To evaluate the changes in hull roughness resulting from the cleaning operations, measurements from 

the first and fourth deployments were compared. Specifically, data from the first half of the first 

operation (bow-to-aft direction) and the second half of the fourth operation (aft-to-bow direction) 

were analyzed. Depth sensor readings were employed to estimate ITCH-P's position throughout the 

cleaning process. Fig.6 shows the estimated paths of the ITCH-P robot during the of the above-

mentioned operations. 

 

The processed roughness data were synchronized with depth sensor readings using timestamps. Figs.7 

and 8 illustrate the mean hull roughness, represented by Rt25, at each depth section before and after 

the cleaning operations, along with the differences between them. While Fig.7 demonstrates 

improvements in hydrodynamic roughness at each depth, Fig.8 reveals random variations in hard-

surface roughness. These results suggest that the ITCH system effectively reduces hydrodynamic 

roughness by removing transparent biofouling, such as slime, from the hull without significantly 

affecting hard-surface materials, including paint, metal surfaces, and barnacles. 
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Fig.6: Paths of the ITCH-Performance robot during the first and fourth cleaning operations on the 

starboard side. The blue path represents the bow-to-aft movement during the first 

deployment, while the orange path indicates the aft-to-bow movement during the fourth 

deployment. Depth readings were used to track the robot’s position. 

 

 
Fig.7: Mean hydrodynamic roughness (Rt25) at varying depths before and after cleaning operations. 

The left and middle panels show roughness values before and after cleaning, respectively, 

while the right panel illustrates the reduction in roughness. Decreases in roughness indicate 

removal of slime and other transparent biofouling. 

 

 
Fig.8: Average hard-surface roughness (Rt25) at varying depths before and after cleaning opera-

tions. The left and middle panels show roughness values before and after cleaning, 

respectively, while the right panel illustrates the differences. The random variations suggest 

minimal impact on hard-surface materials such as paint and metal. The graphics are more 

consistent when averaged over vertical distribution. 

 



 

279 

By using the paths of the ITCH-P robot shown in Fig.6, the roughness values were mapped to the 

corresponding sections of the hull, each measuring 10 m in length and 1 m in depth. The mean 

roughness values were averaged within each section, and the overall average hull roughness was 

calculated using sections covered by both the bow-to-aft and aft-to-bow movements. The transition of 

roughness values is summarized in Fig.9. The figure demonstrates the successful removal of 

transparent fouling during the first deployment and suggests further reductions achieved through 

subsequent cleanings. 

 

 
Fig.9: Average hydrodynamic and hard-surface roughness before cleaning, after the first cleaning, 

and after four cleaning operations. The stacked bar chart shows a significant reduction in 

hydrodynamic roughness following initial cleaning, while hard-surface roughness remains 

largely unchanged, indicating selective biofouling removal by the ITCH system. However, it 

also indicates an irreducible hydraulic roughness measurement bias being a focus of further 

studies. 

 

4. Conclusions 

 

This paper has presented the deployment and performance of the ITCH-Performance robot in 

measuring hull roughness through case studies. The analysis demonstrated the system's capability to 

deliver reliable roughness measurements across different hull surfaces, contributing valuable insights 

for hull maintenance and performance optimization. 

 

The paper proposes paint evaluation as important. Paints are investments 2-3 orders of magnitude 

larger than cleanings and lasts for 5 years. Paint selection will benefit of increased quantification to 

enter in an AI assisted evaluation scenario 

 

The case studies highlighted the effectiveness of the ITCH-Performance system in processing the 

collected data and extracting key surface parameters such as Rt and Ra for the paint. Additionally, the 

ITCH-Performance robot can measure significantly more points than traditional hull roughness 

measurement methods, providing more comprehensive surface characterization. The hydrodynamic 

roughness measurement (fouling roughness) will never be as accurate as the hard surface, but there is 

still significant potential improved accuracy. 

 

Future work will focus on refining the measurement algorithms, particularly for hydrodynamic 

roughness. It will also focus on improving the position estimation of the robot during cleaning 

operations to make roughness comparisons more accurate and consistent. Increased use and gradual 

improvement of the technology will enable a technology that is reliable and accurate, not only for 

paint, but also fouling. 
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Abstract 

 

This study employs nonlinear regression analysis on operational data to model ship resistance under 

real maritime conditions. The methodology categorizes resistance into calm water, wind, wave, and 

current components, using theoretical models integrated with ship onboard data and weather data. Z-

score filtering ensures data reliability by removing outliers. The Trust Region Reflective (TRR) 

algorithm minimizes the residuals between observed and predicted values. Results indicate significant 

impacts of wind and wave resistance on ship performance, with added resistance components validated 

against real-world data, providing insights for improved ship design and operational efficiency. 

Comprehensive data segmentation enhances model accuracy and prediction reliability. 

 
1. Introduction 

 

Ship resistance studies conducted in controlled environments, like towing tanks and numerical 

simulations, often fail to account for the complexities of real-world maritime conditions, leading to a 

discrepancy known as the "sea margin." This margin, accounting for 15% to 20% additional resistance, 

is a buffer in power calculations but does not explicitly consider diverse environmental factors such as 

wind, waves, and currents. Early studies have explored added resistance due to these factors. Still, they 

primarily rely on model test data rather than operational data, highlighting a gap in applying real-world 

data for accurate resistance modelling, ITTC (2021). 

 

ISO standards like ISO 15016 and ISO 19030 guide ship speed, power measurement, and hull 

performance maintenance but have limitations in capturing comprehensive operational data, ISO 

(2002,2015,2016). Recent AI techniques offer potential solutions but face challenges in interpretability 

and validation. Integrating theoretical models with operational data, including GPS tracking and 

weather conditions, can bridge these gaps, providing transparent, practical, and reliable full-scale 

models. These models enhance research, development, and the practical operation of ships, ensuring 

that theoretical, experimental, and numerical techniques are effectively utilized and compared. 

 

2. Methodology 

 

The mathematical modeling begins with the relationship between a ship's power and resistance. EHP 

EP  is the power required to overcome the total resistance of the ship TR  as it moves through the water 

at a given speed V . It does not account for losses in the propulsion system and purely presents the 

power needed to propel the ship in Eq.(1). 

 

 E TP R V=   (1) 
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This study categorizes the resistance into four components, as shown in Eq.(5): the calm water 

resistance, the added resistance due to wind, waves, and current. 
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 T calm wind wave currentR R R R R= + + +  (5) 

 

First, the calm water resistance is expressed as the product of water density w , ship speed GV , wetted 

surface area S , and calm water resistance coefficient calmC , as shown in Equation (6). The increase in 

added resistance due to hull fouling, resulting from increased frictional resistance, can be included in 

this component. So, the effect of hull fouling would appear as an increase in the calm water resistance 

coefficient. It is important to note that ship's speed GV  should be considered as SOG rather than STW. 

 

 21

2
calm w G calmR V SC=  (6) 

 

The added resistance due to wind is considered, which is well-defined in ISO 15016, as shown in Eq.(7). 

a  is the air density, windC  is the coefficient of added resistance due to wind, XVA  is the transverse 

projected area above the waterline including superstructures, and windV  is the relative wind speed. The 

second term in Eq.(7) is the added resistance due to wind that occurs even when the relative wind speed 

is zero, caused by the headwind effect as the ship advances at speed GV . Generally, this component is 

included in the total resistance of the full-scale ship during power prediction based on model tests ITTC 

(2017). In this study, we also consider the second term as part of the calm water resistance and exclude 

it from the added resistance due to wind. To simplify the equation, we transformed the coefficient of 

added resistance due to wind at zero relative wind direction using a cosine function of the relative wind 

direction. Thus, the final equation for the added resistance due to wind is shown in Eq.(8). 
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The modeling of added resistance due to waves also follows a non-dimensional approach. In the semi-

empirical SNNM method, the non-dimensional transfer function for added resistance from regular 

waves AWK  can be expressed using water density, gravitational acceleration g , ship breadth B , length 

L , and wave height A , as shown in Eq.(12), Wang et al. (2021). The SNNM method defines the added 

resistance due to waves as the mean added resistance in regular waves and as the sum of the motion-

induced component and the wave reflection-induced component. The non-dimensional transfer function 

defined in this study is considered to include both components. The empirical formula typically involves 

complex equations that consider the ship's shape parameter, draft, speed, and wave direction based on 

a series of data sets, Liu and Papanikolaou (2016,2019,2020). In this study, it is defined the transfer 

function as a function of only non-dimensionalized mean wave length / L  and the mean relative wave 

direction wave . To facilitate regression using operational data and simplify the interpretation of results, 

it is simplified it to a 2nd order polynomial function of two variables, as shown in Eq.(13). The terms 

,00wavec , ,10wavec , etc.; are the polynomial coefficients. 
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ISO 19030 applies the concept of relative water speed concerning the hull by using STW as the 

reference speed, ISO (2016). Conversely, as mentioned in the modeling of the calm water resistance, 

SOG is used for the reference speed of a ship in the study. Consequently, the reference speed for the 

added resistance due to current will be defined as the difference between the STW WV  and SOG GV . By 

defining the current resistance coefficient currentC  as shown in Eq.(15) and considering the sign of the 

difference between STW and SOG, it can be determined the directional influence of the current. If 

currentC +  is applied, it indicates the current is assisting by pushing the ship from behind, thereby decreasing 

the total resistance. Conversely, 
currentC −  applies when the current opposes the motion by pushing against 

the ship from the front, thus increasing the total resistance. 
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current w G W G W G W

C C C C
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Additionally, the sea water density can be determined using sea temperature data from onboard 

measurements or weather information. It can be accurately calculated the water density by referring to 

the ITTC sea water density table, ITTC (2011). The water density can be incorporated as a function, as 

shown in Eq.(16). Operational data typically includes the mean draft measured by draft gauges, which 

can be used to determine the wetted surface area and the transverse projected area. If the design values 

for the wetted surface area and transverse projected area are known, linear regression can create 

functions, as shown in Eqs.(17) and (18). 

 

 ( ) 
ww f sea temperature =  (16) 

 ( )SS f T=  (17) 

 ( )
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The non-linear mathematical model for the resistance components is developed in the previous chapter. 

TRR algorithm is designed to handle non-linear optimization problems, making it the most appropriate 

and effective method for our needs, Coleman and Li (1994). The primary objective of TRR algorithm 

is to minimize the sum of the squares of the residuals, which are the differences between the observed 

and model-predicted values. The objective function ( )pf  is mathematically presented in Eq.(19). 

 

 ( ) 2

p
1

p min
n

i

i

f r
=

=   (19) 

where ir  is the residual for the the i -th observation, and p  is the coefficient vector of dimension m , 

which is the number of coefficients to be estimated. The residual vector r  has dimension n , which is 

the number of observations. 

 

One of the key features of TRR algorithm is its ability to handle bound constraints on coefficient s. In 

practical scenarios, certain coefficients must remain within specific limits to reflect realistic physical 

conditions. The bounds can be defined in Eq.(20). 

 

 
lower upperp p p   (20) 
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where lowerp  and lowerp  are the lower and upper bounds of the coefficient vector p . 

 

The trust region subproblem is then solved within these bounds, ensuring that the coefficient updates 

do not violate the specified constraints. The trust region subproblem with bound constraints can be 

formulated in Eq.(21). 

 

 
2 T

lower upper
d

min Jd r λd d subject to d and p p d p+ +    +   (21) 

where λ  is the Lagrange multiplier. 

 

Operational data comes from various sources with measurement accuracies that are often difficult to 

verify due to the inherent uncertainty in measurement and weather data, Aldous (2016), Alous et al. 

(2015). Even highly accurate sensors at the time of installation may not maintain that level of precision 

throughout their operational life. This variability makes it crucial to thoroughly review data for outliers. 

Outliers can significantly distort outcomes, potentially leading to a substantial decrease in model 

reliability. Therefore, this study employs a z-score filtering method to systematically identify and 

iteratively remove outliers that negatively impact our regression analysis, ensuring robust and reliable 

results, Rousseeuw and Hubert (2011). 

 

The z-score method identifies observations that deviate significantly from the mean of the dataset. The 

z-score for each data point is calculated using Eq.(22). 

 

 i

i

x x
Z

s

−
=  (22) 

where iZ  is the z-score value, ix  is the individual observation, x  is the mean of the observations, and 

s  is the standard deviation of the observations. 

 

The threshold for determining whether an observation is an outlier based on the z-score is typically set 

at 1.96, corresponding to a 95% confidence interval. 

 

- If 1.96iZ  : The i -th observation is considered an outlier. This means that the observation 

deviates significantly from the mean and may have a disproportionately large effect on the 

estimated regression coefficients. 

- If: 1.96iZ  : The i -th observation is not considered an outlier. These observations are deemed 

to have an acceptable level of deviation and are retained in the dataset. 

 

p-value, also known as the significance probability, is used to assess the significance of estimated co-

efficients and determine which coefficients are statistically meaningful and should be retained in the 

model. The p-value in statistical hypothesis testing measures the strength of evidence against a null 

hypothesis. For regression analysis, the null hypothesis typically states that a particular coefficient does 

not affect the dependent variable, Kennedy-Shaffer (2019), Maneejuk and Yamaka (2021), Moiseev 

(2017).  

 

- Null hypothesis (H0): The coefficient does not significantly contribute to the model. 

- Alternative hypothesis (H1): The coefficient significantly contributes to the model. 

 

A small p-value (typically ≤ 0.05) indicates strong evidence against the null hypothesis, suggesting that 

the coefficient is statistically significant and should be considered reliable. Conversely, a large p-value 

suggests weak evidence against the null hypothesis, indicating that the coefficient may not be necessary. 

 

For regression coefficient i , p-value is derived from the s-statistic, calculated in Eqs.(23) and (24). 
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 ( )2 1i t ip F t= −  (24) 

where i  is the estimated value of the coefficient and ( )iSE   is the standard error of the estimate. The 

p-value ip  is obtained from CDF of the t-distribution iF . The factor of 2 accounts for the two-tailed 

nature of the test, as it is interested in deviations in both directions from the null hypothesis. Significant 

coefficients (p-value ≤ 0.05) will likely have a meaningful impact on the dependent variable. They are 

considered reliable, while insignificant coefficients (p-value > 0.05) do not significantly affect the 

dependent variable and may be excluded to simplify the model. 

 

3. Subject Ships 

 

Operational data from three ships, identically designed and constructed at the same shipyard, designated 

as Ships G, I, and K, are used to explore ship resistance characteristics under various service conditions.  

 

Table I: Comprehensive specifications of the subject ships 

No. Symbol Variable Name Unit 

Value 

Scantling 
Normal 

ballast 

Heavy 

ballast 

1 BPL  Length Between Perpendiculars [m] 334.00 

2 B  Breadth [m] 62.00 

3 D  Depth [m] 29.80 

4 WLL  Length of Waterline (LWL) [m] 339.90 323.01 327.07 

5 FT  Draft at Forward Perpendicular 

(FP) 
[m] 21.40 10.80 14.03 

6 AT  Draft at After Perpendicular (AP) [m] 21.40 11.30 14.03 

7 MT  Draft at midship [m] 21.40 11.05 14.03 

8   Displacement [m3] 360,537 173,644 225,686 

9 S  Wetted surface area [m2] 297,75 22,021 24,303 

10 BKS  Bilge keel area [m2] 127.00 

11 TA  Transverse area above Waterline [m2] 1,223 1,865 1,680 

12  LCB from midship, f+ [m] 8.56 13.20 12.97 

13  KB [m] 11.207 5.734 7.302 

14 bC  Block coefficient - 0.8136 0.7589 0.7768 

15 pC  Prismatic coefficient - 0.8151 0.7616 0.7790 

16 mC  Midship section coefficient - 0.9980 0.9960 0.9970 

17 wC  Waterplane coefficient  0.9020 0.8260 0.8547 

18  /BPL B  - 5.39 

19  / MB T  - 2.90 5.61 4.42 

20  
1/3/BPL   - 4.69 5.99 5.49 

21  2/3/S    2.78 2.31 2.41 

22  Propeller diameter [m] 10.70 

23  Number of blades - 4 

24  
Service speed with sea margin 

15% 
[knots] 14.62 15.75 15.55 

25  Main engine MCR  - 21,000 kW x 58.9 RPM 

26  Main engine NCR - 17,850 kW x 55.8 RPM 

Table I is comprehensive specifications of subject ships. It includes details on how these design 
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parameters vary under different loading states, such as scantling, normal Ballast, and heavy ballast 

conditions. 

 
Fig.1 shows the geoplots of the routes for Ships G, I, and K. These ships primarily load cargo on the 

eastern coast of South America, sail around the Cape of Good Hope at the southern tip of Africa, and 

mainly unload their cargo on the eastern coasts of South Korea and China, occasionally stopping in the 

Middle East as well. All three ships operate on the same service route, traveling between the eastern 

coast of South America and East Asia. 

 

 
Fig.1: Ship route on world map of Ship G, I and K 

 

4. Results and Discussion 

 

4.1. Normality assessment of residuals for regression analysis 

 

Normality assessment ensures that the assumptions underlying the regression analysis are met, thereby 

validating the statistical inferences drawn from the model. Non-normal residuals can indicate model 

misspecification, heteroscedasticity, or the presence of outliers, which can undermine the reliability of 

the regression results. Therefore, by confirming that the residuals follow a normal distribution, it is 

enhanced the robustness and credibility of our regression models. 

 

Regression analysis is conducted on the entire datasets for three subject ships over all collection period. 

Fig.2 shows histograms of the z-score residuals for each ship. To evaluate the adequacy of the regression 

analysis, KS statistic, skewness, and kurtosis are used as metrics to assess the normality of the residuals. 

The KS test is a nonparametric test that measures the maximum distance between the sample's ECDF 

and the ECDF of a reference distribution, typically the normal distribution for regression analysis, 

Fasano and Franceschini (1987). Skewness quantifies the asymmetry of a distribution around its mean. 

Positive skew indicates a tail extending towards higher values, and negative skew indicates a tail 

extending towards lower values, Bai and Ng (2005). Kurtosis measures the "tailedness" of the 

distribution or the concentration of values around the mean. Excess kurtosis compares the distribution's 

kurtosis with a normal distribution with a kurtosis of 3. The statistical calculations for these measures 
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are in Eqs.(25)-(27). 

 

 ( ) ( )KS Statistic max nF x F x= −  (25) 
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where ( )nF x  is ECDF of the residuals and ( )F x  is ECDF of a normal distribution. iX  is the individual 

residual values, X  is the mean of the residuals, and s  is standard deviation. 

 

 
Fig.2: Standardized residual histograms with KS statistic, skewness and kurtosis using entire dataset 

 

4.2. Regression analysis results using entire dataset 

 

Fig.3 shows the scatter plots of the true and predicted total resistance values for Ships G, I, and K using 

the entire dataset. The percentage RMSE values are calculated to be 12.44% for Ship G, 8.83% for Ship 

I, and 8.28% for Ship K. These %RMSE values provide a quantitative measure of the regression models' 

prediction accuracy. Ships I and K exhibit slightly lower %RMSE values than Ship G, indicating that 

the models for these ships are marginally more accurate in their predictions. 

 

 
Fig.3: Scatter plots of true and prediction values of the total resistance using the entire dataset 

 

Table II presents the coefficients estimated from regression models for ships G, I, and K before and 

after applying z-score filtering. Cells marked with "-" indicate variables with high p-values, considered 

statistically insignificant and unreported. The presence of outliers significantly impacted these 

coefficients, and their removal through filtering allowed for more accurate coefficient estimation. 
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Table II: Regression analysis coefficients before and after outlier removal for entire dataset 

Coefficients 

Ship G Ship I Ship K 

Before 

filtering 

After 

filtering 

(Ratio) 

Before 

filtering 

After 

filtering 

(Ratio) 

Before 

filtering 

After 

filtering 

(Ratio) 

calmC  2.59×10-3 
2.56×10-3 

(98.8%) 
2.84×10-3 

2.70×10-3 

(94.9%) 
3.16×10-3 

3.04×10-3 

(96.2%) 

windC  1.47×100 
2.55×100 

(173.2%) 
1.63×100 

2.67×100 

(163.2%) 
1.82×100 

2.31×100 

(126.9%) 

currentC −  1.42×10-2 
6.48×10-3 

(45.6%) 
3.59×10-2 

2.20×10-2 

(61.3%) 
5.72×10-2 

6.81×10-2 

(119.1%) 

currentC +  4.70×10-2 
6.45×10-2 

(137.1%) 
4.69×10-2 

1.19×10-1 

(253.6%) 
5.20×10-2 

7.77×10-2 

(149.5%) 

,00wavec  8.64×10-1 
4.02×10-1 

(46.5%) 
3.24×10-1 

1.19×100 

(366.2%) 
5.82×10-1 

8.70×10-1 

(149.5%) 

,10wavec  -2.25×100 
-7.71×10-1 

(34.2%) 
-7.61×10-1 

-2.68×100 

(352.0%) 
- - 

,01wavec  1.68×100 
1.19×100 

(70.7%) 
1.49×100 

1.12×100 

(74.8%) 
1.05×100 

7.59×10-1 

(72.2%) 

,11wavec  -9.55×10-1 
-7.16×10-1 

(74.9%) 
-1.59×100 

-1.21×100 

(76.3%) 
-1.13×100 

-5.47×10-1 

(48.2%) 

,20wavec  1.79×100 
6.46×10-1 

(36.0%) 
2.19×100 

2.99×100 

(137.0%) 
2.06×100 - 

,02wavec  -1.80×10-1 
-1.24×10-1 

(68.9%) 
-1.14×10-1 

-1.26×10-1 

(110.0%) 
-4.24×10-2 

-9.87×10-2 

(232.6%) 
 

Fig.4 Fehler! Verweisquelle konnte nicht gefunden werden.illustrates different resistance 

components, including the calm water resistance, the added resistance due to wind, waves, and current, 

for each ship. 

 

 
Fig.4: Bar chart on percentage distributions of resistance components for entire dataset 

 

Fig.5 presents the results of added resistance due to wind for three ships, denoted Ship G. The added 

resistance is expressed as a percentage of the calm water resistance. Data is divided into 15o intervals 

and represented using boxplots to examine the effect of relative wind direction thoroughly. 

Additionally, histograms are included below each boxplot to show relative wind direction data 

distribution. Here, a relative wind direction of 0o indicates head wind, and 180o indicates following 

wind. Positive values of the added resistance indicate an increase in resistance (wind pushing from the 

front), while negative values indicate a decrease (wind pushing from behind). 

 

4.2.1. Added resistance due to wind 

 

Fig.6 presents detailed analyses of the added resistance due to wind for Ships G, segmented by relative 
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wind speed and direction. These figures build on the data presented in Fig.5. by further segmenting the 

data into different wind speed ranges, thereby providing a more detailed view of the results. The wind 

speed ranges are divided into five categories: 0-5 m/s, 5-10 m/s, 10-15 m/s, 15-20 m/s, and over 20 m/s. 

 

 
Fig.5: Added resistance due to wind [%] by relative wind direction for Ship G 

 

 
Fig.6: Added resistance due to wind [%] by relative wind speed and direction for Ship G 

 

In the head wind range (0-15o), all three ships exhibit a median added resistance of approximately 15-

20%, with maximum values reaching up to 28%. As the relative wind direction approaches 90o (beam 

wind), the added resistance decreases significantly, centering around 0%, indicating a small impact 

from the wind. At 180o (following wind), the added resistance becomes slightly negative, around -5%, 

reflecting a minor reduction in resistance due to wind pushing the ship from behind. The overall trend 

shows a decrease in added resistance as the relative wind direction moves from head wind to following 

wind, affirming the regression analysis's validity. 
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4.2.2. Added Resistance due to Waves 

 

Fig.7 presents the results of added resistance due to waves for Ships G. The added resistance is 

expressed as a percentage of the calm water resistance. The horizontal axis represents the non-

dimensionalized mean wave period, which is the mean wave period divided by the ship's length. The 

relative mean wave direction is segmented into ranges from 0o to 180o in 30o intervals, and each of these 

intervals is depicted as a separate subplot. To provide a comprehensive view of data distribution, 

histograms are included along both the horizontal and vertical axes of the joint plots (bivariate 

distribution). The scatter plot's data points are represented by hexagonal bins, where the density of the 

data is indicated by the intensity of the color. Additionally, the plot features an average curve and a 

95% confidence interval, highlighting the central trend and indicating the data's variability. 
 

 
Fig.7: Added resistance due to waves [%] by non-dimensionalized mean wave period and mean relative 

wave direction ranges for Ship G 
 

Histograms at the top of each subplot present the non-dimensionalized mean wave length data 

distribution. The overall data ranges from 0 to 0.8, but most are concentrated between approximately 

0.2 and 0.4. This range is notable where wave reflection is dominant, indicating that waves striking the 

hull and reflecting off it disrupt the water surface around the hull due to the energy involved, Faltinsen 

(1983), Townsin and Kwon (1983), Wang et al. (2021). 

 

The results indicate a linear relationship between non-dimensionalized wave length and the added 

resistance due to waves from 0 to 0.3, suggesting that as the wave length increases, so does the added 

resistance. Beyond 0.3, this increase seems to plateau. Although the data becomes significantly less 

dense beyond 0.3, reducing reliability, Ship G, which has data in this range, still does not show a marked 

increase in added resistance. Comparing these findings with various model test results would be 

beneficial. However, most previous studies focus on model tests with wave lengths between 0.3 and 

2.0. Model tests involving extremely short waves might face physical limitations of wave generators or 

wave breaking due to excessive wave steepness, potentially preventing accurate tests. Most previous 

studies present model test or numerical analysis results with intervals larger than 0.3, Guo et al. (2012), 

Kashiwagi (2013), Sprenger et al. (2017), Stocker (2016). This underscores the need for further research 

and testing for large ships. Given that the target ship in this study has a length of approximately 340 m, 

model tests to compare the added resistance in extremely short wave conditions for large ships over 300 

m in length would be useful. 

 

When examining the impact of mean relative wave direction, the added resistance due to waves 
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increases not merely because of proximity to 0o (head wave). From 0o to 90o, the increase is relatively 

uniform, peaking around a 0.3 non-dimensionalized wave length at an average of about 20%. Beyond 

90o, as the mean direction shifts towards the stern or rear quarters of the ship, added resistance decreases. 

However, Ship K does not follow this trend closely, likely due to its sparse and uneven data distribution, 

necessitating further verification of how data quantity and distribution impact results. Moreover, in 

contrast to the added resistance due to wind, where following wind provides a pushing effect, waves do 

not have a pushing effect, emphasizing the differences in how resistance from these elements impacts 

the ship. 
 

4.2.3. Added Resistance due to Current 

 

Fig.8 is a joint plot graph depicting the added resistance due to current, expressed as a percentage, in 

relation to relative current speed. This figure illustrates how the resistance experienced by the ship 

varies with changes in the speed of the current relative to a ship. 
 

 
Fig.8: Added resistance due to current [%] by relative current speed 

 

The analysis indicates that when the relative current speed is positive, meaning a head current, even a 

modest speed of 0.5 can cause an increase in resistance of up to 20%. Conversely, when the relative 

current speed is negative, indicating a following current, a speed of 0.5 results in a resistance reduction 

of approximately 5-10%. This left-right asymmetry suggests that the impact of the current pushing 

against the front of the ship is significantly greater than that of the current pushing from behind, even 

at the same current speed. 

 

4.2. Regression analysis results using sub-datasets by loading conditions, individual 
routes, and speed ranges 

 

One crucial observation from the data distribution histograms on the right side of each subplot is that 

data points exceeding the 2-3% range are rare. This indicates that most resistance increases and 

decreases are concentrated within the 2-3% range. This means that resistance changes beyond this range 

are infrequent and likely to occur in specific and localized conditions. This knowledge equips us to 

understand better and prepare for ship performance in various conditions. The ships in this study 

primarily operate in the vast open seas, which likely contributes to these findings. Ships operating in 

regions with very fast currents over short periods might exhibit a different data distribution, with a 

higher frequency of data points showing significant resistance changes. 

 

Figs.9 and 10 present comparisons of the calm water resistance coefficient by route and speed range 

with model test results for Ship G under scantling and normal ballast conditions, respectively. 

 

Following the previous segmentation methodology, this analysis divided the data based on loading 

conditions, individual routes, and speed ranges. Speed ranges are segmented in 2-knot intervals, with 

the midpoint value representing each segment. For instance, 8-10 knots range data is considered 

performance at 9 knots. When data is absent due to z-score filtering, those subplots are marked with 
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"No data." For comparative analysis, model test results and design speed are also included. This ship's 

operational speed range predominantly falls within 10-15 knots, whereas model tests are conducted in 

the 11-17 knots range. The design speed is 14.62 knots for the scantling condition and 15.75 knots for 

the normal ballast condition. 

 

 
Fig.9: Comparison of the calm water resistance coefficient by route and speed range with model test 

results for Ship G under scantling condition 

 

Interpreting the results, it can be observed that the calm water resistance coefficients are somewhat 

similar to model test results or slightly higher near the design speed. However, as the speed decreases 

to 10 knots, the coefficients derived from regression analysis increasingly exceed model test results, 

reaching up to 75% higher. This has significant implications for ship design and performance 

evaluation. It suggests that the shipyard ensures the guaranteed performance at the design speed, as 

specified in contracts, resulting in better alignment at this speed. Conversely, it indicates that the actual 

resistance of the ship in the medium speed range (10-14 knots) is higher than the model test results. 

Interpreting these findings accurately, it becomes clear that there is a pressing need to revise the 

empirical factors or methods used to extrapolate model test results to account for speed-specific scale 

effects. 
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Fig.10: Comparison of the calm water resistance coefficient by route and speed range with model test 

results for Ship G under normal ballast condition 

 

Fig.11 shows the calm water resistance coefficients obtained through regression for each route and 

speed on a single graph to observe the overall trend. To ensure a meaningful comparison, it is focused 

on the speed range of 11 to 15 knots, which overlaps with the model test's speed range and where the 

data points are predominantly distributed. It is performed for the linear regression within this speed 

range and include the results in the graph for a comprehensive trend analysis. 

 

The results from Figs.9 and 10 are more clearly and distinctly illustrated in Fig.11. The calm water 

resistance coefficient data distribution for both loading conditions aligns closely with the model test 

results near the design speed. However, it is observed that the difference increases as the speed 

decreases below the design speed. Although further research on a more diverse range of ships is 

necessary, this finding supports the earlier-mentioned suspicion that the traditional method of 

estimating ship scale performance through model tests may not be valid across all speed ranges, 

particularly in the medium-speed range (approximately 10-14 knots) observed in this study. 

 

Figs.12 and 13 show the results for Ship I and Ship G, respectively. In the case of the normal ballast 

condition, where the data distribution is relatively broad and includes results near the design speed, a 
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similar trend to Ship G is observed. However, in the scantling condition, where the data distribution is 

sparse, the results are slightly higher than the model test, even at the design speed. If Ships I and K had 

a data distribution as extensive as Ship G, they would likely exhibit a similar trend. 

 

 
Fig.11: Trend comparison of all calm water resistance coefficients by route and speed range with model 

test results for Ship G 

 

 
Fig12: Trend comparison of all calm water resistance coefficients by route and speed range with model 

test results for Ship I 

 

Generally, when analyzing sub-datasets segmented by route and ship speed, the calm water resistance 

coefficient is expected to reveal a fouling effect, showing a changing trend over time. However, no clear 

increasing trend is observed. To properly analyze this, records of hull maintenance activities aimed at 

reducing the fouling effect (i.e.; efforts to restore the hull to its initial state), such as hull cleaning, 

repainting, and blasting, are necessary, Adland et al. (2018), Akinfiev et al. (2007), Dev and Saha 

(2017). Unfortunately, such records are not separately available. Upon further investigation, it is found 

that cleaning is performed 1-2 times every 6-12 months, and there are also instances of repainting and 

hull blasting in dry dock. This suggests that appropriate hull surface maintenance measures effectively 

manage the hull fouling condition. Therefore, it is necessary to obtain these records accurately in the 

future to conduct a quantitative study on the fouling effect. 

 



295 

 
Fig.13: Trend comparison of all calm water resistance coefficients by route and speed range with model 

test results for Ship K 

 

5. Concluding Remark 

 

This study aimed to develop a comprehensive data-driven model to analyze ship resistance using 

operational data. By integrating theoretical background with practical data, the research offers a robust 

framework for understanding the different components of ship resistance. The findings provide valuable 

insights into improving ship design and operational strategies for more efficient and sustainable 

maritime operations. The key findings are: 

 

 The results for calm water resistance are statistically reliable, showing a variation within 5% 

to 10% of the average. However, comparisons with model test results indicate that in-service 

performance tends to be higher, especially at medium to low speeds. This discrepancy suggests 

that additional research is necessary to understand and bridge the performance gap between 

model ships and full-scale ships at these speeds. 

 The added resistance due to wind is statistically significant, with variations within 5% to 10% 

of the average. A new finding reveals that the transverse projected area does not always pro-

portionally affect the added resistance due to wind. This highlights the need for further studies 

on the wind speed profile at the waterline and the forces acting on different parts of the ship 

(upper, middle, and lower) to improve the accuracy of wind resistance models under various 

loading conditions. Additionally, it is observed that head winds have a greater impact on re-

sistance than following winds, even at the same wind speed. 

 While the added resistance due to waves is statistically significant, the transfer function coef-

ficients show some inconsistency, with high p-values suggesting that a simpler model structure 

could be more effective. A key finding is that, for large ships, most wave conditions corre-

spond to very short waves. In these cases, added resistance increases proportionally with the 

non-dimensionalized wave length. 

 The calm water resistance coefficient is anticipated to increase over time due to fouling; how-

ever, this trend is not observed. Instead, the analysis is limited to comparing coefficients 

among different ships. This indicates that the current methodology is insufficient for detecting 

fouling effects over time. Detailed records of hull maintenance, such as cleaning, repainting, 

and blasting, are necessary for a more accurate assessment of fouling impacts. Future research 

should incorporate these maintenance histories to understand better and model the fouling ef-

fect on ship resistance. 

 Segmenting data by loading conditions, individual routes, and speed ranges improves the ac-

curacy of regression analysis, as indicated by the %RMSE results. However, overly segment-

ing the dataset can reduce data diversity and significantly decrease the reliability of regression 

analysis. Ensuring a minimum number of diverse data points for regression is crucial. This 
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aspect requires continuous research to balance practical applications, model construction, and 

theoretical comparisons. 

 

Future work will entail: 

 

 Future studies should focus on establishing robust methodologies to assess the minimum num-

ber and diversity of data points necessary for successful regression analysis. This will ensure 

that the models are statistically reliable and can accurately capture the variations in ship re-

sistance under different operational conditions. 

 Research is needed to develop methods to effectively incorporate the inherent uncertainties in 

onboard measurement and weather data. This will enhance the robustness and accuracy of the 

resistance models, making them more reliable for real-world applications. 

 Future work should involve comprehensive comparative studies, model tests, and various nu-

merical methods. These will help validate the resistance models developed from operational 

data and provide insights into improving them based on empirical and numerical findings. 

 Expanding the scope of research to include a broader range of ship types and routes is crucial. 

This will ensure that the findings are generalizable across different classes of vessels and op-

erational conditions, thereby enhancing the applicability and reliability of the resistance mod-

els in diverse maritime contexts. 
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Abstract 
 

It is well known that biofouling on ship hulls significantly increases fuel consumption, leading to higher 
operational costs and environmental impact. A top performing hull coating is among the lowest hanging 

fruits for vessel decarbonisation, by efficiently minimizing the risk of fouling to keep operational costs and 
CO2 emissions at a minimum. At the same time, there is a lot of uncertainty and claims around the 

performance of different hull coatings, which are not always seen as holding up in the market. This paper 

presents the collaboration between Hempel and DNV to review and validate the claims made by Hempel 
regarding the potential fuel savings from using Hempaguard silicone paint. The claimed fuel savings have 

been validated by DNV in an independent comprehensive evaluation, which could be seen as a first step in 

getting more rigid transparency from independent sources on different vessel retrofits to reduce fuel 
consumption. The paper presents the various data and the method used in the validation to assess biofouling 

prevention and fuel savings. Results demonstrate that Hempel’s coating significantly reduces biofouling, 
leading to notable fuel savings and operational efficiency. In addition, the collaboration highlights the 

substantial economic and environmental benefits that can be obtained from an independent organisation like 

DNV engaging in increased transparency of performance claims across available solutions. 

 

1. Introduction 

 

Choosing the right energy efficiency measures is critical to ensure the marine industry remains on the 

right decarbonization paths as set forth by IMO. A number of operational measures (slow steaming, 

route planning and trim optimization) and technical upgrades (in terms of energy saving devices, engine 

modifications, propeller or bow modifications, etc.) are available on the market today, Barreiro et al. 

(2022), but it remains a key challenge for the shipping industry to choose the strategies that gives the 

highest return on investment and impact on GHG emissions. Two very important energy efficiency 

measures are choosing adequate hull coating and optimization of maintenance schedule, which can 

combined save a lot of energy in shipping industry, Bouman et al. (2017). 

 

Retaining a clean and smooth hull, free of biofouling growth, reduces the frictional resistance, which in 

turn significantly reduces the vessel fuel consumption compared to a fouled hull. The new generation 

of silicone-based antifouling coating systems with active antifouling technology such as Actiguard®, 

has been recognized as one of the most mature technology upgrades that can provide immediate 

improvement to ship energy efficiency, Fig.1. 

 

For both silicone coatings and other energy saving devices, it is however a well-known pain point that 

there is limited transparency and industry agreement on the ship specific fuel savings gained by each 

technology, and fleets around the world are currently pursuing a wide range of different technical 

upgrades to achieve the same target of GHG emissions. The challenge exists both when deciding 

between investment in different types of energy saving devices and, if an advanced high-performance 

coating is preferred, on the choice of coating. This represents an important problem, because 

traditionally in chartering market, the main beneficiary of the energy savings associated with energy 

saving technologies is often not the one that has invested in such technologies, Dirzka and Acciaro 

(2021). Consequently, even if the total cost can be reduced with the installation of certain energy saving 

technology, in many cases the one responsible for funding might not benefit from it. This has been 

recognized as an important energy efficiency barrier in shipping industry, Rehmatulla and Smith (2015). 

A big element of this challenge is the absence of an independent framework or body to evaluate the 

different solutions available on the market in a uniform way. For suppliers of energy efficiency solutions 
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such as Hempel, validation by an independent 3rd party is also a helpful way to further understanding 

of own performance and increase the quality of communicated performance claims. 

 

 
Fig.1: Overview of claimed fuel savings and ROI (Hempel internal compilation) 

 

In 2023, Hempel and DNV engaged in a collaboration to verify the performance of Hempaguard, which 

is one of the most widespread energy efficiency measures with more than 4000 vessel applications since 

2013. In the absence of an industry standard evaluation framework, this paper describes the steps taken 

in the present validation process including methodology, evidence, challenges, as well as recommended 

steps forward for an industry wide evaluation framework. The present case does in no way constitute a 

finalized framework for third-party validation of performance claims, but it highlights the potential 

benefits for all parties in the shipping industry of increased 3rd party validation, and the importance in 

furthering data transparency, use of in-service data and an updated verification framework. 

 

2. Claims to be validated 

 

The claims to be validated relate to performance of Hempaguard technology in terms of its direct impact 

on fuel consumption for a single vessel as well as for a fleet of vessels. The fuel consumption claims 

on fleet level concern the combined savings of all vessels applied with Hempaguard. 

 

When assessing and quantifying the performance of a vessel or fleet with a certain technology, a number 

of effects will play a role. For the present claims, three main aspects are important to consider: 

 

• The ability of the hull coating to prevent biofouling over the lifetime of the coating, hereafter 

referred to as the “antifouling performance” 

• The impact of surface properties on the frictional resistance and hence power and fuel 

consumption of a ship with the coating as applied, i.e. without any fouling on the hull, hereafter 

referred to as the “out of dock” effect 

• The baseline to which the performance and fuel consumption should be compared. 

• The specific claims made by Hempel on the above three aspects as well as the assumptions 

behind the calculation of combined fuel savings for all Hempaguard applications are presented 

in this section. 
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2.1. Antifouling performance and out of dock effect  

 

The antifouling performance claim for Hempaguard consists of a value for the maximum “speed loss” 

that can be expected over a 5-year dry docking cycle. The speed loss is to be measured and defined 

according to the ISO 19030 standard on performance monitoring, ISO (2016). In short, the speed loss 

is the difference in the average speed deviation from a reference curve between the first year and the 

remaining years in the dry-docking period, Fig.2. The claimed maximum speed loss is 1.4% over a 5-

year dry docking period for Hempaguard X7. 

 
Fig.2: Illustration of definition of “speed loss” 

 

The “out of dock” gain is most often measured in reduced power to obtain a constant average cruising 

speed. Fig.3 shows Hempel’s speed loss and out of dock performance claims for Hempaguard. The out 

of dock effect claim is 6% in power. 

 

 
Fig.3: Overview of the claimed Hempaguard performance against chosen baseline 

 

Although both the out of dock effect and the speed loss value for a given vessel will depend on ship 

hydrodynamic characteristics and operational profile, the values presented in Fig.3 represent fleet 

averages and these are the values that are being claimed as average values for all vessels. 

 

2.2. Performance baseline 

 

All vessels in the world fleet apply coatings on their underwater surface to protect the steel against 

corrosion and, in almost all cases, against fouling growth. As the ability of various coatings in 

preventing fouling over the lifespan of the coating varies a lot, it makes sense to establish a baseline for 
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comparison of antifouling coatings. It has for several years been the accepted assumption, that a “market 

average” coating can be expected to have a speed loss of 5.9% over 5 years measured as defined in the 

ISO 19030 standard on performance monitoring. 

 

The market average speed loss of 5.9% originates mainly from the 2nd IMO GHG study, IMO (2009). 

This is one of the only sources of “market average” fouling performance available in the industry. The 

use of average speed loss is a core component of the ISO19030 performance monitoring framework. 

While the framework is from 2009 and thus at risk of becoming dated, a recent report from the IMO 

GloFouling Project, GloFouling (2022), reiterates that biofouling has a significant impact on frictional 

resistance and GHG emissions for the world fleet.  

 

2.3. Fuel consumption claims 

 

The fuel consumption claim regards the total performance advancements obtained from all Hempaguard 

applications since 2013, measured against the “market average” baseline. The method for arriving at an 

estimate for these total savings will be described in this section.  

 

First of all, the average expected performance of a given vessel with Hempaguard is assumed to be as 

described in Section 2.1, Anti fouling performance and out of dock effect, i.e. have a speed loss of 1.4% 

over 5 years and an out of dock effect of 6% in power relative to a normal antifouling coating. The 

deterioration of performance is assumed to be linear over the dry-docking period, even though, the 

reality will look quite different for many cases, with more steady performance in first 3-4 years and a 

more steep performance deterioration in the last one or one and a half year. On average and for 

simplicity however, both Hempaguard and market average performance is assumed to be linearly 

decreasing over time. The value of 5.9% speed loss over 5 years is assumed for the market average 

coating, while the out of dock effect of a market average coating is assumed to be zero percent. For the 

conversion of speed loss into added power, a 1:3 ratio is assumed, meaning that a 2% speed loss is 

equivalent to a 6% power increase and a 6% power gain is equivalent to a 2% speed reduction (note the 

opposite sign!). 

 

The challenge with estimating the fuel savings on the aggregated fleet level is that not all applied vessels 

will behave the same. For instance, not all ships will have dry docking periods of exactly 60 months. 

This was considered by first modelling the claimed performance gains by year after DD for one vessel, 

and then to correct for the variation in dry docking interval afterwards. Since the performance difference 

between Hempaguard and a “market average” coating widens over the DD period, an annual 

performance gain to the baseline was calculated and an adjustment of the share of vessels still sailing 

during each service year was applied. While some Hempaguard vessels have DD cycles longer than 5 

years, the performance gain was disregarded for this analysis. Table I shows the share of vessels still in 

service by year after DD. 

 

Table I: Share of vessels still in service by in-service year from DD 

Year Share of vessels 

in-service 

1 100% 

2 98% 

3 95% 

4 80% 

5 75% 

 

Finally, it is acknowledged that not all vessels applied with any coating or other Energy Saving Device 

obtain the expected performance benefits. In the example of silicone coatings, events such as ice trading, 

idle periods beyond the guaranteed idle duration or excessive mechanical damage will impact the 

performance of the coating negatively. In comparison to the other coatings, the ratio of raised 

performance complaints is low, pointing that the majority of the vessels are performing as expected, but 
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it was still decided to have a necessary adjustment factor in the aggregate fleet performance claims. 

Rather than trying to calculate the exact performance gain, including the cases of non-performance, a 

35% “buffer” adjustment was applied to all aggregate performance claims, which was >4 times larger 

than the ratio of complaints received by Hempel on Hempaguard complaints, Fig.4. This conservative 

approach is used to avoid overstating the fleet aggregate performance claims. 

 

 
Fig.4: Relationship between performance claims of a single vessel and all historical applications 

 

In addition to the relative savings per vessel, the total fuel consumption saved by all applied vessels is 

claimed. While the actual fuel consumption for all applied vessels is not available to Hempel, the fuel 

consumption was modelled using an average activity level of 56% and an average daily consumption 

of 36 tons/day. 

 

Since the launch of Hempaguard X7 in 2013, Hempel has launched several leading silicone antifouling 

products. In 2019, Hempaguard MaX / X8 was launched and in 2024, Hempaguard Ultima was 

launched, both with slightly higher performance claims than Hempaguard X7. Hempaguard X7 does, 

however, continue to be the product with the most historical applications and most performance 

evidence available to review. For this reason, all Hempaguard applications were normalized to the 

Hempaguard X7 performance claims for the study regardless of product, even if the actual performance 

gains in these cases would be expected to be slightly higher. 

 

3. Method of validation 

 

In absence of an established framework for performance validation, a number of considerations were 

made prior to reviewing the evidence of silicone coating performance. When working with assurance 

and validation of claims, it is important to be precise in the use of terminology. 

 

3.1. Verification versus validation and assurance 

 

The current standard for quantification of the effect of fuel saving measures based on in-service 

measurements is ISO19030:2016, ISO (2016). This was developed to quantify the changes to hull and 

propeller performance over time. The newbuild or out-of-dock performance of a vessel is typically 

quantified by following the ISO15016:2015, ISO (2015), standard for assessing speed and power 

performance. Verification may be done against these standards.  

 

Validation is used as a more general term when results are checked against industry accepted 

methodology, best practices or published results. Validity and accuracy are checked, and the action is 

to confirm the results to be true or correct. 

 

Assurance is done to build trust and provide confidence. Assurance enhances the credibility and 

reliability of information for decision-making purposes. It provides a second independent assessment. 

Confidence in claims may be provided by applying sound engineering judgement when looking at the 
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evidence and results. Auditing is a common part of assurance, and the assurance process may start with 

a workshop where the claim is substantiated and a detailed scope for further validation is developed. 

 

3.2. Ideal and possible approaches to working with the in-service evidence 

 

Performance monitoring is done by operators and owners for many reasons, e.g. as a basis for hull and 

propeller maintenance, optimizing fleet utilization and benchmarking. Many systems exist with a large 

span of features, accuracy and transparency. There is a lack of standards for performance data, which 

makes such data costly and difficult to work with. 

 

Performance data has a high commercial value and access is strictly controlled.  It is challenging for a 

supplier of emission reduction technology to convince their clients to share data. It might be easier for 

an independent 3rd party to get access as part of an assurance process. 

 

In an ideal world, it would be possible to assess the current technical vessel performance in calm water 

conditions. This would include the deterioration due to hull and propeller fouling. The Vessel Technical 

Index as presented in Guo et al. (2021,2024) proposes a method for continuous quantification of the 

vessel technical condition. This promises improved accuracy relative to the speed-loss calculation in 

ISO 19030, but also sets higher requirements to measured quantities and the accuracy of the vessel 

base-line performance. 

 

The assurance scope of work to support claims related to hull coating performance includes a variety 

of activities. Independent analysis of raw data is costly but may be required. Another common task is 

to review analysis scripts and test them on data where validated results exist. If the analysis is supposed 

to follow e.g. ISO19030, verification against this standard is possible. A powerful and efficient method 

is to work on a selection of random samples. Sensitivity checks are always useful to understand and 

quantify the effect of modelling assumptions. The scope could be to perform independent analyses, 

spot-checks of analyses, review of analysis scripts, require sensitivity checks and more. 

 
Public data and results may be used to benchmark and for plausibility checks. The third-party assurer 

will normally have knowledge that is directly applicable, but that may not be directly used due to 

confidentiality. 

 

4. Evidence for claims 

 

4.1. Potential evidence 

 

With the first product launch in 2013 and close to 5000 applications as of January 2025, Hempaguard 

silicone coatings is one of the most widespread coating solutions on the market. The product is in 

January 2025 applied on >10% of the hull surface on the global merchant fleet (IMO numbered vessels, 

DWT > 5000, built year = 1999-2019). This provides a huge potential for validation of the performance 

through real life evidence, Fig.5, through different data streams: 

 

• In-service vessel performance data  

• In-docking pictures and AHR data from the subsequent DD application 

• Inspection data from divers or ROVs reports 

 

In addition to data on actual applications, Hempel has a variation of laboratory data on both the surface 

properties (relating to “out of dock” effect) and antifouling performance (relating to Speed loss claim).  

 

There are several studies in the literature which demonstrate the benefits of silicone coatings - fouling 

release coatings over the conventional antifouling coatings in terms of out of dock effect, Weinell et al. 

(2003), Candries et al. (2003), Holm et al. (2004), Candries and Atlar (2005), Yeginbayeva and Atlar 

(2018), Unal (2015). Farkas et al. (2021) demonstrated that the savings in brake power due to the 
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application of silicone coating in comparison to conventional antifouling coatings are from 5 % to 8.5 

% depending on the initial surface condition of hull surface. Thus for laboratory conditions (ideally 

smooth hull surface – cannot be achieved in practice even for newbuilt condition) the obtained savings 

for very large crude oil tanker and handymax bulk carrier are around 5 %, for more rougher hull surface 

condition (closer to first in docking condition) savings are around 7 %, while for high initial hull surface 

roughness (closer to second or third dry-docking conditions) savings are up to 8.5 %. 

 

 
Fig.5: Available real life evidence of silicone coating applications 

 

4.2. Uncertainties and limitations in the evidence data 

 

Having the full set of data: underwater images, in service data and information (AHR data and images) 

about arriving condition at end of dry-docking period for many vessels of different types and with 

different trading profiles would be the ideal scenario for truly evaluating performance of a given 

product. Unfortunately, both data availability and data quality remain limiting factors for Hempel as 

well as everyone else in the industry.  

 

On the availability side, Hempel has access to in-docking reports on the next DD for the vessels that 

reapply their next docking with Hempel. While this covers the majority of applications, some vessels 

have not yet reached the time of the next DD, and some vessels will choose to change the coating 

system. For in-service performance data and underwater reports, this data is shared with Hempel only 

by some customers enrolled in performance guarantee schemes or interested in expert advisory during 

the in-service period. The availability of both performance data and underwater images are hence 

limited, and the number of vessels with overlapping data in all data streams (represented by intersection 

in Fig.5) are very limited. 

 

Although each of the data streams individually has a strong potential to provide real life evidence, they 

also have challenges of their own. Poor quality of in-service data is a significant limiting factor when it 

comes to performance monitoring. Many shipping companies still rely on noon data, which may not 

contain all necessary variables and are prone to mistakes and even occasional fraud. The introduction 

of automatically collected high frequency data on more and more vessels is improving the situation but 

also introduces other challenges in terms of sensor drift and fallout. The above means that even with 

available performance data for many vessels, there will be a significant fraction of the data that cannot 

be considered reliable evidence due to issues with data quality. For both underwater and arrival 

condition images, data quality can also be an issue in terms of visibility and image quality. 
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The lack of standardized analysis frameworks is another challenge. In service data is the only of the 

three sources that can be evaluated via an ISO standard, ISO (2016), but this method is no longer state-

of-the-art in hull performance monitoring. Even though, there are lot of concerns regarding the 

standardized analysis framework which are discussed in Bertram (2017), Farkas et al. (2025), and there 

are lot of modelling advancements which are made and presented at HullPIC conferences, yet there is 

no update in standard framework for the industry. For both underwater reports and in-docking pictures, 

no industry standard on reporting, analysis and the link to fuel efficiency exists as of yet, although 

multiple workgroups are working on this topic. With the lack of industry standards for the analysis 

methods and interpretation, there is a risk that the results will be inconsistent or biased and the method 

not transparent. 

 

Potential data bias is important to consider when drawing conclusions from any of the data sets. The 

occurrence of cleaning is an important example. If the ambition is to evaluate the performance of a 

certain hull coating without cleaning, then it is essential that the data evaluated is from vessels that have 

not been cleaned. At the same time, a fouled propeller will also give rise to performance degradation 

that cannot easily be separated from hull performance degradation. Information about cleanings and 

polishings are not always shared, which means that some added uncertainty should be considered when 

drawing conclusions based on performance data. 

 

It is a fact that the results of most performance analysis methods will to some degree be dependent on 

the operational pattern, and if this changes, this introduces bias in the analysis, which cannot be 

attributed hull performance. 

 

Combining the results from performance analysis of in-service data with underwater images can in 

some cases compensate for the bias mentioned. Underwater images can give information about the type 

and coverage degree of fouling on the hull and propeller and from that, a rough estimate for the 

performance at the time of inspection can be made. However, the uncertainty on such estimations is 

large because there is no standardized way of quantifying and reporting fouling and the estimation of 

the resulting effect of certain fouling on the powering of a vessel is complex and uncertain. Despite the 

mentioned challenges with underwater images, they can be used to support or discard the results of 

performance data. 

 

With only a subset of the applications being supported by in-service data and underwater images, there 

will be a bias in which scenarios of performance shipowners or operators are choosing to share data 

with Hempel. Some customers prefer to enroll in a proactive monitoring of their Hempaguard applied 

fleet, which gives an unbiased view of the performance, but some customers share in-service data or 

underwater images only for vessels with performance uncertainties or questions, which will lead to a 

bias in the aggregated performance average.  

 

One frequently used indication of the out of dock level of performance is the average hull roughness 

(AHR), which are often measured across the hull surface after application. It is well known that the 

surface properties of a hull coating affect the frictional resistance of the vessel. Although a theoretical 

formula for the effect of various surface properties does not exist, there has been historical attempts to 

derive an empirical relationship between surface properties and added frictional resistance. In particular, 

the relationship between average hull roughness (AHR) and added frictional resistance has been in 

focus. The focus on AHR has made sense historically as it was developed for coatings of certain type, 

with similar surface characteristics. Within the current ITTC 1978 Performance Prediction Method, 

ITTC (2017), still the Townsin equation is utilized to account for roughness effects on the increase in 

frictional resistance. However, this relationship lacks physical foundation and fails to consider most 

surface properties, and they are not necessarily suited for modern coating technologies with different 

surface properties. An important study which clearly demonstrates the inaccuracy of the Townsin 

equation is presented in Song et al. (2024). Furthermore, Andersson et al. (2020) demonstrated that 

even for newly coated surfaces there is only moderate correlation between increase in frictional 

resistance and AHR, with quite large scatter due to variations in surface texture, hydrophobicity, surface 

elasticity, poor coating application or coating damages. Because of these problems regarding proper 
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description of roughness penalties using only one roughness parameter, AHR should only be used to 

indicative rather than deriving actual out of dock effects and properties. 

 

4.3. Used evidence data 

 

Taking into account the mentioned issues with data uncertainty and limitations, a subset of data within 

each data stream was used for the validation. 

 

This section shows some examples of what and how evidence was evaluated by DNV as part of the 

Hempaguard performance validation process. Due to customer confidentiality, not all material including 

identifiable information can be shared. This section is not an attempt to recreate the full extent of in-

service evidence evaluated by DNV but to show a few examples. As described in the methodology 

chapter, the cases are constituting Hempaguard X7 vessels performing as expected.  

 

The data for this validation was delivered by Hempel with a deep-dive validation by DNV done for 

some select cases. A future “best-practice” verification framework would include the data being 

available from a neutral 3rd party for a wider portion of the applied fleet as well as with an established 

framework for evaluating the link between e.g. inspection visuals and vessel performance. 

 

4.3.1. In service performance data 

 

Fig.6 shows two examples of performance data sets shared with DNV. The top plot shows speed 

deviation over 60 months for an LNG carrier with high frequency auto logged data. The bottom plot 

shows speed deviation plot over 48 months for a container carrier using noon data.   

 

 
Fig.6a: Example of speed deviation plot for an LNG carrier over 60 months. The speed loss is 1.3% 

 
Fig.6b: Example of speed deviation plot for a container carrier over 48 months. The speed loss is 

close to zero. 
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4.3.2. In docking pictures 

 

Fig.7 shows examples of indocking photos of two vessels, an MR tanker and a container vessel.  

   

Fig.7a: Arrival condition of MR tanker with Hempaguard X7 and 50 months DD cycle. No hull 

cleanings, 55% activity 27° C water temp, 12 knots operational speed 

 

   

Fig.7b: Arrival condition in dock of container carrier after 62 months Hempaguard X7 application. 

No hull cleanings, 75% activity, 25°C water, 16 knots speed 

 

4.3.3. Hull roughness measurement 

 

Even though AHR is not a unique indicator for the increase in frictional resistance, it represents an 

important indicator, and data on AHR for many applications can contribute to get an indication on the 

ability of a given coating to minimize hull roughness and thereby frictional resistance keeping other 

factors constant.  

Fig.8 shows results of AHR values for 100 vessels coated with Hempaguard. 86% of AHR values are 

below 100 μm; hulls coated with conventional antifouling coatings have an average of 140-160 μm. 

 

 
Fig.8: Real-life data from AHR measurements – sample of ~100 vessels including containerships, 

tankers and bulkers of different sizes 

 

Fig. 9 shows surface scans of two coatings, a silicone and a self-polishing coating, after application and 

after immersion in sea water for 7 weeks at 12 knots. The images show that while roughness of self-

polishing coating has increased after 7 weeks due to leach layer formation, the roughness of the silicone 

coating stays the same.  
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Fig.9: Comparison of surface roughness before and after the exposure to sea water 

 

Hempel carried out a series of research projects in collaboration with TNO, FORCE Technology, and 

Indian Institute of Technology Madras to establish the differences in frictional resistance between 

different coating technologies. Several experimental studies are carried out including rotary disk 

experiments, towing tank tests of flat plates and towing tank tests of ship model. Since various silicone 

coatings generate the same low surface roughness, a modified version of Hempaguard was used for 

simplicity reasons in the towing tank tests. Within rotary disk experiments it has been demonstrated that 

hydrogel-based fouling release coating with biocide will always provide smoother surface in 

comparison a silyl acrylate based antifouling coating. The difference is more pronounced as the 

substrate roughness increases. In towing tank tests carried out in Force Technology and Indian Institute 

of Technology Madras it was also clearly demonstrated that the Hempaguard equivalent coating has 

lower frictional resistance compared to conventional antifouling paint, where on average initial saving 

is around 6 %. 

 

DNV reviewed reports from the relevant research projects to build confidence around the out-of-dock 

reduced resistance claim. Supporting material was found in open literature. It is important to include 

the measurements from actual dry-dock applications as an assumption of laboratory specimen 

roughness levels may be overly optimistic. 

 
4.3.4. Inspection data 

 

Fig.10 shows examples of in-water inspection data for two vessels after 37 months and 31 months after 

application of Hempaguard. 

 

   

Fig.10a: Underwater inspection of VLCC tanker, 37 months after application with Hempaguard X7. 

No Hull cleanings, 70% activity, 27°C water temp, 12 knot operational speed 
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Fig.10b: Underwater inspection of LNG tanker, 31 months after application of Hempaguard X7. No 

Hull cleanings, 80% activity, 27°C water temp, 15 knot operational speed 

 

4.3.4. Assessment based on combined evidence 

 

The shared evidence was used in combination to document the claims on both antifouling performance 

and out of dock savings for silicone compared to a market average antifouling. The combined effect of 

out-of-dock reduced hull friction and an average speed-loss well below the benchmark is basis for a 

calculated annual CO2 saving. DNV performed an independent calculation of the total emission of the 

fleet of vessels with Hempaguard. AIS data for all the vessels were combined with the DNV emission 

prediction model MASTERv2, see Guo et al. (2022) to arrive at the total emissions. The emission 

prediction model has been thoroughly calibrated to produce accurate emissions on a fleet level. 

Calibration is done by comparing predictions with an extensive benchmark database of reported and 

verified annual emissions. 

 

5. Conclusion 

 

5.1. Benefits for the maritime industry  

 

Increased collaboration on validating and evaluating performance of anti-fouling coatings or other 

energy saving devices is beneficial for both solution suppliers like Hempel and third-party companies 

like DNV and shipowners/operators. 

 

Shipowners and operators face an endless selection of vessel technical upgrades when allocating their 

investments into vessel newbuild and retrofit decisions for their vessels. The absence of a verification 

framework and established validation methods means that it is almost impossible to get educated on 

every newbuild or retrofit choice available in the market. In addition, it is difficult to assess the validity 

of performance claims made by suppliers, leading to lower levels of trust between shipowners and 

suppliers in the market and imperfect capital allocation. It is commonly noted that in a case that all 

possible energy saving devices are installed on the vessel and they perform as they were marketed, 

achieved savings would be enormous. An improved validation method of performance claims would 

benefit shipowners with better capital allocation towards the highest ROI savings for their specific ships 

and a more efficient path towards decarbonization in shipping.  

 

Suppliers of coatings and other energy saving solutions face a knowledge and transparency gap in the 

market. In the absence of established performance verification frameworks, a myriad of activities is 

taking place to convince potential buyers of the solution of the performance, with decentral verification 

from single cases or fancy marketing brochures. Increased transparency presents both opportunities and 

challenges for suppliers. If their solutions perform as advertised, they stand to gain significant benefits. 

However, if the actual performance falls short of expectations, their business may face considerable 

difficulties. The authors of this article see net benefits in such increased performance transparency, 

allowing the best performing solutions to grow faster and moving focus from fancy brochures to well 

documented and trustworthy performance records. 

 

Finally, for third-party companies like DNV, increased transparency is central to these companies' role 

in driving fleet decarbonization. Being at the forefront of knowledge when it comes to performance 
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verification is crucial to advise ship owners on their best choice of action and engage with IMO on the 

possible pace of decarbonization requirements. It is essential that the third-party can deliver increased 

trust and provide a consistent and fair assurance service. This requires an unbiased and consistent 

approach, which is greatly facilitated by a standardized framework. 

 

5.2. Recommended next steps to facilitate performance validation 

 

The collaboration between Hempel and DNV has provided useful insights regarding challenges and 

opportunities for performance validation. 

 

The following presents a wish list to further facilitate validation and quantification of the effect of hull 

characteristics on vessel performance: 

 

• Accurate out-of-dock vessel performance quantification 

o Improved techniques to test the hull coating properties and resulting effect on the wall 

shear force, e.g. via the roughness function 

o Measurements in dock after application of the hull coating properties that influence the 

roughness function 

o Better methods to calculate vessel resistance based on the established roughness 

function 

o Increased accuracy in sea-trial measurements 

 

• Continuous measurement of in-service vessel performance 

o Standardized measurements (quantities, accuracy, quality, frequency) and analysis 

o Results made available to a trusted third party  

o Accuracy to allow for detection of rapid changes in the performance 

o Supporting data like vessel operational parameters, recorded events like hull and 

propeller cleaning, pictures from under-water surveys. All data should be in a 

standardized format 

 

• Standardized baselines for out-of-dock hull coating frictional resistance and in-service 

performance deterioration 
 

Addressing the second point, DNV has released a recommended practice describing the Vessel 

Technical Index, see Guo et al. (2021,2024), Tvete et al. (2022). Experience has shown that this index 

can be used to monitor vessel hull performance with a higher accuracy and temporal resolution than 

applying ISO 19030.  Still, the method requires high-frequency in-service data as well as a reasonably 

accurate ship model. The effort needed to apply the method will be reduced by further automation and 

data integration via e.g. the DNV Veracity platform. 
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Abstract

 

Speed-fuel warranties are the cornerstone of commercial agreements in shipping. A vessel's value is 

directly tied to its speed-fuel performance. Every metric ton it consumes less than the market average 

should, in theory, result in a higher hire rate. However, comparing a vessel’s warranted consumption 

against a market reference is not simple, due to the wide variety of ‘warranted conditions’ circulating 

today. Even worse, many chartering professionals today don’t fully appreciate the commercial 

implications of these ‘warranted conditions’, leading to costly misjudgments. This paper explores the 

business risks and rewards of differing ‘warranted conditions’, while also arguing that more 

standardized performance warranties and normalization-based performance analysis will accelerate 

maritime decarbonization. 

 

1. Introduction  

 

Speed-fuel warranties are fundamental to commercial shipping agreements, directly influencing vessel 

valuations, chartering decisions, and financial risk. However, the lack of standardized ‘warranted 

conditions’ has led to widespread ambiguity, creating room for misinterpretation, commercial disputes, 

and even arbitration battles. Without clear definitions, shipowners and charterers frequently find 

themselves at odds over what constitutes ‘good weather’, leading to costly misjudgments in performance 

and contentious claims. This paper explores the commercial and legal risks associated with inconsistent 

warranty wording, highlighting real-world financial impacts. More importantly, it argues that a shift 

toward clearer, standardized performance benchmarks will not only reduce disputes and improve market 

predictability but also accelerate maritime decarbonization. By rewarding efficiency and eliminating 

loopholes that mask underperformance, standardization can drive investment into greener, higher-

performing vessels, creating a financial incentive for sustainability in global shipping. 

 

2. Different wordings 

 

As the warranted conditions applicable are the result of every unique negotiation, endless variations 

exist. In this section, we try to cover some of the most frequently occurring variations in practice. We 

recognize many more variations are possible. 

 

We propose two tables: one focusing on factors affecting the speed-fuel figures and the other on factors 

determining the percentage of conditions covered under warranty. Some factors appear in both tables, 

while others are placed in just one for clarity, even if they potentially have an effect on both. The goal 

is to keep things simple while covering the most important influences. 
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FACTORS MOSTLY AFFECTING THE SPEED-FUEL NUMBERS 

Factor Variation Comment 

Wind Up to and including Beaufort scale 2 Assuming headwinds and taking 

the upper limit of Beaufort scale. 

So the most conservative 

interpretation. 
Up to and including Beaufort scale 3 

Up to and including Beaufort scale 4 

Up to and including Beaufort scale 5 

Waves Up to and including Douglas Seastate 3 (max. 

wave height 1.25m) 

Distinctions between swell waves 

and wind waves could also be 

considered. As well as using 

‘significant’ wave height or not. 

Left out of scope for this paper. 

Up to and including Douglas Seastate 3 (max. 

wave height 2.0m) 

Currents ‘No adverse currents’ → +0.25kn on avg. As favourable currents still apply, 

a certain factor of average 

favourable currents over time 

needs to be assumed. 
‘No adverse currents’ → +0.5kn on avg. 

‘Currents factored in’ → 0kn Normalized using hindcast 

weather data 

Fuel Type VLSFO Assuming LCV of 41.5 MJ/kg 

MGO Assuming LCV of 42.6 MJ/kg 

Draft ‘Laden’ interpreted as summer load line Ballast condition left out of scope 

for this paper. 

‘Laden’ interpreted as summer load line -1m 

‘Laden’ interpreted as summer load line -2m 

Abouts -0.5kn speed and +5% consumption The latter provides more safety 

margin if warranties are made for 

over 10kn. 
+-5% on both speed and consumption 

No abouts  
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FACTORS MOSTLY AFFECTING THE COVERAGE 

(= what % of conditions are considered to be ‘within warranty’) 

Factor Variation Comment 

Period to be 

considered 

Over 24h (no mention of ‘continuous’) Different stretches across time can 

all be aggregated regardless of 

being continuous or not. 

Continuous period of 24h ‘Continuous’ periods are evaluated 

by considering weather averages 

over 6 hour sub-periods, that 

should then continuously meet the 

criteria for 12-24-48 hours 

respectively. 

Continuous period of 12h 

Continuous period of 48h 

Wind Up to and including Beaufort scale 2  

Up to and including Beaufort scale 3 

Up to and including Beaufort scale 4 

Up to and including Beaufort scale 5 

Waves Up to and including Douglas Seastate 3 (max. 

wave height 1.25m) 

Distinctions between swell waves 

and wind waves could also be 

considered. As well as using 

‘significant’ wave height or not. 

Left out of scope for this paper. 

Up to and including Douglas Seastate 3 (max. 

wave height 2.0m) 

‘No adverse swell’ Interpreted as all swell waves from 

-90 to +90 degrees relative to ship 

heading 

Currents ‘No adverse currents’  Interpreted as all currents from -90 

to +90 degrees relative to ship 

heading 

‘Currents factored in’  

Loading 

condition 

‘Even keel’ Violated whenever trim exceeds 

1.5m 

No mention of ‘even keel’  

 

 

3. Impact on speed-fuel figures 

 

In this study, we will quantify the amount the different wordings can have on the speed-fuel numbers. 

We choose to keep speed at a constant value - corresponding to a speed over ground (SOG) of 12 knots 

- while selecting various factors to change in our experiment to then observe the fuel consumption 
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estimation. The factors are the ones presented in the previous section, while the estimations for fuel are 

obtained using Toqua’s Ship Kernels, a proprietary form of physics-informed machine learning applied 

to vessel performance modeling, Colle and Morobé (2022). Formally, we compute the fuel predictions 

𝑦 using a speed input 𝑥 with additional parameters 𝜃 using model 𝑓 as 𝑦 = 𝑓(𝑥; 𝜃). 

 

For this experiment, we selected two different models, one for a Suezmax tanker, and another for a 

Kamsarmax Bulker. We will mostly be interested in the variations between the different conditions 

compared to a reference point, which is given by: 

 

• Wind: Up to and including Beaufort scale 4. 

• Waves: Up to and including Douglas sea state 3 with a max. wave height of 1.25 m 

• Currents: ‘No adverse currents’ interpreted as ‘+0.25 kn favourable currents on average’ 

• Fuel type: VLSFO 

• Draft: ‘Laden’ interpreted as summer load line 

• Abouts: -0.5 kn on speed and +5% on consumption 

 

These reference conditions give the following consumption values: 

 

• Tanker, Suezmax: 25.13 mt/day, 

• Bulker, Kamsarmax: 28.91 mt/day. 

 

Throughout this exercise, we will look at how the predictions using the different conditions will deviate 

from these reference values, in percentage, absolute value, and difference in cost (assuming a fuel price 

equal to 𝑝 = $600/𝑚𝑡). The reference condition will be taken as the baseline, and one factor will be 

changed at a time. 

 

The results for different conditions are presented in the table below, where, for each condition, the 

absolute, percentage, and cost variation is computed as: 

𝛥 = 𝑦𝑟𝑒𝑓 − 𝑦𝑐𝑜𝑛𝑑 , 𝛥𝑝 =
𝛥

𝑦𝑟𝑒𝑓
, 𝛥𝑐 =  −𝛥 ⋅ 𝑝, 

respectively. 

 

The results are presented in the table below. For each factor, different variations are applied, and the 

resulting delta compared to the reference condition is expressed in three ways. First the % deviation in 

consumption, secondly the absolute consumption deviation in mt/day, and lastly the daily bunker 

deviation is expressed in dollars, under the assumption that a better-described vessel will fetch a higher 

rate in the market equal to its lower cost to operate. 

 

FACTORS MOSTLY AFFECTING THE SPEED-FUEL NUMBERS 

Factor Variation Impact Suezmax Tanker 

% | mt/day | $/day 

Impact Kamsarmax 

Bulker 

% | mt/day | $/day 

Wind Up to and including 

Beaufort scale 2 

-2.1% | -0.55 mt/day | +$330/day -2% | -0.6 mt/day | 

+$350/day 

Up to and including 

Beaufort scale 3 

-1.6% | -0.41 mt/day | +$240/day -1.4% | -0.41 mt/day | 

+$250/day 

Up to and including 

Beaufort scale 4 

(Reference) 

0% | 0 mt/day | $0/day 

(25.13 mt/day | $15.1k/day) 

0% | 0 mt/day | $0/day 

(28.91 mt/day | $17.3k/day) 
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Up to and including 

Beaufort scale 5 

+1.6% | +0.40 mt/day | -$240/day +1.4% | +0.42 mt/day | -

$250/day 

Waves Up to and including 

Douglas Seastate 3 

(max. wave height 

1.25m) 

0% | 0 mt/day | $0/day 

(25.13 mt/day | $15.1k/day) 

0% | 0 mt/day | $0/day 

(28.91 mt/day | $17.3k/day) 

Up to and including 

Douglas Seastate 3 

(max. wave height 

2.0m) 

+9.6% | +2.41 mt/day | -

$1450/day 

+4% | +1.2 mt/day | -

$730/day 

Currents ‘No adverse currents’ 
→ +0.5kn on avg. 

-5.3% | -1.33 mt/day | +$800/day -4.7% | -1.36 mt/day | 

+$820/day  

‘No adverse currents’ 
→ +0.25kn on avg. 
(Reference) 

0% | 0 mt/day | $0/day 

(25.13 mt/day | $15.1k/day)  

0% | 0 mt/day | $0/day 

(28.91 mt/day | $17.3k/day) 

‘Currents factored in’ 
→ 0kn 

+5.5% | +1.38 mt/day | -$830/day +4.9% | +1.41 mt/day | -

$840/day 

Fuel Type VLSFO 

(Reference) 

0% | 0 mt/day | $0/day 

(25.13 mt/day | $15.1k/day)  

0% | 0 mt/day | $0/day 

(28.91 mt/day | $17.3k/day) 

MGO -2.6% | -0.65 mt/day | +$390/day -2.6% | -0.75 mt/day | 

+$450/day 

Draft ‘Laden’ interpreted as 

summer load line 

(Reference) 

0% | 0 mt/day | $0/day 

(25.13 mt/day | $15.1k/day)  

0% | 0 mt/day | $0/day 

(28.91 mt/day | $17.3k/day) 

‘Laden’ interpreted as 

summer load line -1m 

-4.1% | -1.04 mt/day | +$620/day -3.9% | -1.12 mt/day | 

+$670/day 

‘Laden’ interpreted as 

summer load line -2m 

-8% | -2.02 mt/day | +$1210/day -7.5% | -2.18 mt/day | 

+$1310/day 

Abouts -0.5kn speed and +5% 

consumption 

(Reference) 

0% | 0 mt/day | $0/day 

(25.13 mt/day | $15.1k/day)  

0% | 0 mt/day | $0/day 

(28.91 mt/day | $17.3k/day) 

+-5% on both speed 

and consumption 

-2.1% | -0.53 mt/day | +$320/day -1.9% | -0.54 mt/day | 

+$330/day 

No abouts +16.6% | +4.16 mt/day | -

$2500/day 

+15.3% | +4.42 mt/day | -

$2650/day 

 

These tables give an experimental demonstration how consumption can vary across different warranted 

conditions, and that this variation can be significant in certain scenarios. If we were to look at two 

extreme examples, the difference becomes even more apparent. Below, we provide the results when 

combining the most and least restrictive variations of each factor from our previous experiment. For our 

tanker example, the variation between these two extremes reaches around 45%. In both cases, the 
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variation leads to more than $5000/day of difference. This comparison of extreme - yet possible - 

examples here, combined with the results presented above clearly highlights the huge commercial 

implications that ambiguity in the wordings of the warranted conditions can lead to. 

 

Comparing the best, worst, and a typical scenario 

Scenario Impact Suezmax Tanker 

% | mt/day | $/day 

Impact Kamsarmax 

Bulker 

% | mt/day | $/day 

Most restrictive case 

- Beaufort scale 2 

- Max. wave height 1.25 m 

- ‘No adverse currents’ in 

the ‘+0.5kn on avg.’ sense 

- MGO fuel 

- ‘Laden’ interpreted as 

summer load line -2m 

- +-5% on both speed and 

consumption 

Absolute values: 

20.32 mt/day | $12.2k/day 

 

 

Relative to reference: 

-19.2 % | -4.82 mt/day | 

+$2900/day 

 

 

Absolute values: 

23.78 mt/day | $14.3k/day 

 

 

Relative to reference 

-17.7% | -5.13 mt/day | 

+$3080/day 

 

 

Reference (average case) 

- Beaufort scale 4. 

- Max. wave height of 1.25m 

- ‘No adverse currents’ in 

the ‘+0.25kn on avg.’ sense 

- VLSFO fuel 

- ‘Laden’ interpreted as 

summer load line 

-  -0.5 knots on speed and 

+5% on consumption 

 

25.13 mt/day | $15.1k/day 28.91 mt/day | $17.3k/day 

Least restrictive case 

- Beaufort scale 5 

- Max. wave height 2 m 

- ‘Currents factored in’ → 
0kn 

- VLSFO fuel 

- ‘Laden’ interpreted as 

summer load line 

- No abouts 

Absolute values: 

34.01 mt/day | $20.4k/day 

 

 

Relative to reference: 

+35.3% | +8.88 mt/day | -

$5330/day 

 

 

Absolute values: 

36.74 mt/day | $25.6k/day 

 

 

Relative to reference: 

+27.1% | +7.84 mt/day | -

$4700/day 
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4. Impact on coverage (% within warranted conditions) 

 

In this section, we consider a different experiment, where we focus on the percentage of time where 

vessels are within the coverage of the warranted conditions, where our goal is again to highlight the 

difference wording has on this percentage. For this exercise, we again focus on two vessels from the 

same category as in the previous section, and we assess a full year of data. Note that this is meant to be 

an example of two vessels, while more robust statistics would require analyzing more vessels over a 

longer time period.  

 

As before, we consider one reference scenario among the options from the second table presented in 

Section 2., given as: 

 

• Period to be considered: Continuous period of 24h 

• Wind: Up to and including Beaufort scale 4 

• Waves: Up to and including Douglas Seastate 3 (max. wave height 1.25m) 

• Adverse swell: No exclusion of adverse swell 

• Currents: No adverse currents 

• Loading condition: No mention of ‘even keel’ 

• Extrapolation: No extrapolation 

 

Considering these conditions, we obtain: 

 

• Tanker: 23.94% of sailing time covered 

• Bulker: 35.02% of sailing time covered 

 

We will also provide an estimate on the worth of a fictional claim, depending on the covered percentage. 

For this, we assume a fictional scenario with an average overconsumption of 3 mt/day, at a cost of $600 

of fuel per mt, over 290 sailing days. Therefore, if 100% of the data is covered, the claim would be 

worth $522k (= 290 days x 3 mt/day at $600/day). For the above reference conditions and corresponding 
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coverage, this would give a claim worth $125k for the tanker (since we have a coverage of 23.94%), 

and $182.8k for the bulker (for 35.02% of coverage), assuming no extrapolation is allowed in the claim. 

 

The table below provides the coverage results for both vessels under different conditions. All results are 

in absolute values, i.e., not compared to the reference. As in the previous section, the reference condition 

is taken as the baseline, and we change a single factor at a time. 

 

FACTORS MOSTLY AFFECTING THE COVERAGE 

(= what % of conditions are considered to be ‘within warranty’) 

Factor Variation Coverage Tanker 

% | $-value of claim 

Coverage Bulker 

% | $-value of claim 

Period to be 

considered 

Over 24h (no 

mention of 

‘continuous’) 

35.58% | $185.3k 47.63% | $248.6k 

Continuous 

period of 12h 

33.79% | $176.5k 45.48% | $237.4k 

Continuous 

period of 24h 

(Reference) 

23.94% | $125k 

 

35.02% | $182.8k 

Continuous 

period of 48h 

12.46% | $65.1k 25.62% | $133.8k 

Wind Up to and 

including 

Beaufort scale 2 

4.51% | $23.5k 8.45% | $44.1k 

Up to and 

including 

Beaufort scale 3 

14.08% | $73.5k 22.27% | $116.3k 

Up to and 

including 

Beaufort scale 4 

(Reference) 

23.94% | $125k 35.02% | $182.8k 

Up to and 

including 

Beaufort scale 5 

24.08% | $125.7k 37.97% | $198.2k 

Waves Up to and 

including 

Douglas Seastate 

3 (max. wave 

height 1.25m) 

(Reference) 

23.94% | $125k 35.02% | $182.8k 

Up to and 

including 

Douglas Seastate 

3 (max. wave 

37.24% | $194.5k 47.22% | $246.5k 
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height 2.0m) 

Adverse 

Swell 

‘No adverse 

swell’ 

9.50% | $49.6k 18.78% | $98k 

No exclusion of 

adverse swell 

(Reference) 

23.94% | $125k 35.02% | $182.8k 

Currents ‘No adverse 

currents’  

(Reference) 

23.94% | $125k 35.02% | $182.8k 

‘Currents 

factored in’ 

53.79% | $280.8k 61.98% | $323.5k 

Loading 

condition 

‘Even keel’ 13.48% | $70.4k 18.08% | $94.4k 

No mention of 

‘even keel’ 

(Reference) 

23.94% | $125k 35.02% | $182.8k 

Extrapolation No Extrapolation 

(Reference) 

23.94% | $125k  35.02% | $182.8k  

Extrapolation 

allowed 

100% | $522k 100% | $522k 

 

As expected, more restrictive conditions cover a lesser portion of the total data, however, as before, our 

goal is to put emphasis on the extent of how different options can have a significant impact on the 

coverage. We will again look closer at two extreme conditions, where the most restrictive and least 

restrictive options of each factor have been selected. Note that for the least strict condition, we still 

consider no extrapolation to look at more interesting examples. The results are provided below. 

 

Comparing the best, worst, and a typical scenario 

Scenario Impact Tanker 

% | $ 

Impact Bulker 

% | $ 

Most restrictive 

- Continuous period of 48h 

- Beaufort scale 2 

- Max. wave height 1.25 m 

- No adverse swell 

- No adverse currents 

- Even keel 

0% | $0 0% | $0 

Reference (average case) 

- Continuous period of 24h 

- Beaufort scale 4 

- max. wave height 1.25m 

- No exclusion of adverse 

23.94% | $125k 35.02% | $182.8k 
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swell 

- No adverse currents 

- No mention of ‘even keel’ 

Least restrictive 

- No mention of 

‘continuous’ 

- Beaufort scale 5 

- Max. wave height 2 m 

- No exclusion of adverse 

swell 

- Currents factored in 

- No mention of ‘even keel’ 

79.35% | $414.2k 88.54% | $462.2k 

 

The difference between the most and least strict conditions in this example is extremely significant, 

where we observe that certain coverage scenarios can actually lead to covering no data at all due to how 

strict they are. This would mean that the claim would not have any worth. While on the other hand, the 

more ‘generous’ coverage conditions can lead to more than 80% of coverage, making the claim worth 

above $400k. 

 

5. Results 

 

5.1. Impact of warranted conditions on speed-fuel figures 

 

The results show that differing wordings of warranted conditions have huge implications. First of all, a 

speed-fuel figure can mean two completely different things depending on the conditions it is warranted 

for. For the tanker example, the exact same vessel would be correctly described at 20.3 mt/day in the 

most restrictive version of ‘warranted conditions’, while it would also be correctly described at 34.0 

mt/day when using the least restrictive version of ‘warranted conditions’. A difference of ~12 mt/day or 

48% - purely due to what variation of warranted conditions apply. For the bulker, the same applies, 

where the same vessel can be described at 23.8 mt/day or 36.8 mt/day depending on what warranted 

conditions are used, good for a total difference of ~13 mt/day or 44%. 

 

5.2. Impact of warranted conditions on coverage of claims 

 

Secondly, different warranted conditions have huge implications on what % of data falls ‘within 

warranty’ and for which can be claimed in case of underperformance. For the tanker example, the exact 

same year of sailing data was analyzed, wherein the least restrictive case 100% of all data would be 

‘within warranty’ and in the most restrictive case 0% would be ‘within warranty’. Likewise for the 

bulker. On average, for the reference conditions representing what occurs frequently in practice, only 

~25% of all data remained ‘within warranty’. Additional restrictions like ‘even keel’ or ‘no adverse 

swell’ can each in itself reduce coverage by another factor of 4x, often leaving the eventual coverage 

with extra restrictions to be a single digit %. To the authors, this indicates a broken system that does not 

protect charterers as it removes almost all the value of the given ‘warranty’. 

 

6. Proposed solutions 

 

The authors propose several practical recommendations to establish a more standardized, transparent, 

and fair framework for defining vessel performance. 

 

6.1. Standardized Wording for Warranted Conditions 

 

To enhance consistency, chartering and legal departments should adopt uniform warranted conditions 

across all agreements, minimizing unnecessary variations. The focus of negotiations should be on speed-
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fuel figures rather than modifying the warranted conditions, as altering them introduces excessive 

complexity and ambiguity, making interpretation difficult for both parties.  

 

While any level of standardization would be a step forward, the authors recommend the following 

conditions. 

 

Recommended warranted conditions to foster standardization and fairness: 

 

• Period to be considered: All data above 24 h (so no ‘continuous’) 

• Wind: Up to and including Beaufort scale 4 

• Waves: Up to and including Douglas Seastate 3 (max. wave height 1.25 m) 

• Adverse swell: No exclusion of adverse swell 

• Currents: Normalization of currents. 

Fuel type: Fuel type & corresponding LCV used for warranty should be made explicit 

• Loading condition: No mention of ‘even keel’. Draft applicable for ‘laden’ and ‘ballast’ 

should be specifically mentioned in meters. 

• Extrapolation: should always be an option 

 

Many of these conditions are already quite common in the industry today. However, we propose two 

key changes to current practices. First, we suggest removing the word "continuous" from the warranty-

covered periods. This adjustment ensures a broader range of data falls under warranty, aligning more 

closely with its original intent of a warranty. Second, we recommend normalizing for currents. This 

increases coverage significantly, while also removing the variable aspect of favourable currents, which 

ensures more clarity and comparability between results. 

 

6.2. Normalization-based approach instead of filter-based approach 

 

Another significant improvement involves rethinking how speed-fuel figures are determined. Current 

methodologies rely heavily on filtering, treating any data that passes the filters as representative of actual 

performance. However, when using criteria such as ‘up to and including 4BFT’, a broad spectrum of 

data gets through the filters, where performance in 1BFT is treated equal to performance at 4BFT, which 

creates huge fluctuations on what ‘performance’ might mean, depending on what distribution of ‘good 

weather’ data the vessels coincidentally ran into. A further downside of this is that, to improve accuracy, 

stricter filtering always needs to be applied, further reducing the amount of data to be considered ‘within 

warranty’, which is already a key problem. 

 

A more effective alternative is a normalization-based approach, which accounts for secondary 

conditions rather than discarding large portions of data. Instead of filtering out data, all reasonable data 

points would be included and adjusted for external factors such as waves, wind, currents, draft, and fuel 

type. This process ensures a clearer, more accurate assessment of speed-fuel performance without 

distortions from variable conditions. 

 

Normalization can be achieved using traditional theoretical methods, such as DNV’s VTI, or through 

advanced data-driven techniques, such as the Ship Kernels used in this paper. Such data-driven 

techniques, when implemented correctly, have the benefit of covering more conditions, achieving higher 

accuracy, while also being able to transparently prove and report on the accuracy attained. A verifiable 

approach like this would build greater trust, a crucial factor for widespread industry adoption. 

 

The key advantage of normalization is its ability to cover over 80% of available data, while creating a 

fair, accurate, and verifiable analysis of performance, by stripping away the influence of  any variations 

in weather, speed, draft, fuel type, etc. that would otherwise cause inaccuracies and unfairness. 
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6.3. Improving data quality 

 

For both standardization (6.1) and normalization (6.2) to be successfully implemented, greater 

confidence in the underlying data is required. A further shift towards more verification by 3rd parties 

on manually reported data, as well as the inevitable shift towards more widespread adoption of 

automated high-frequency data collection, are required. Strengthening data reliability is critical to 

ensuring fair and verifiable performance assessments, ultimately supporting the transition toward 

maritime decarbonization. 

 

7. Conclusion 

 

The proliferation of varying ‘warranted conditions’ has completely hollowed out the true meaning of a 

‘performance warranty’. In many cases, neither party fully comprehends the terms being negotiated. 

This issue remains overlooked, partly due to its excessive complexity and ambiguity, but also because 

the individuals negotiating these terms are often not the ones dealing with the consequences of 

underperformance. The system is broken. The only beneficiaries of this broken system are owners who 

would like to conceal underperformance. A more standardized and transparent framework to define 

performance would certainly be advantageous for charterers, but also for owners of well-performing 

vessels. Charterers would gain more certainty and lower commercial risk, while owners of more efficient 

vessels could differentiate themselves in the market and rightfully earn a fair dollar premium. This would 

ensure that greener vessels are rewarded with higher earnings, generating a strong market-driven 

momentum for maritime decarbonization. 
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